59 resultados para Subtractive clustering
Resumo:
La síndrome metabòlica s’associa amb un risc elevat de desenvolupar diabetis tipus 2 i malaltia cardiovascular. La síndrome metabòlica es defineix com un clúster d’anormalitats metabòliques i, d’entre totes, l’obesitat abdominal constitueix el factor de risc més prevalent i crític en el desenvolupament de la síndrome metabòlica, el risc cardiovascular augmentat i la resistència a la insulina. La prevalença augmentada de l’obesitat en la població a nivell mundial ha portat el teixit adipós al primer pla dels estudis epidemiològics. Anteriorment es considerava el reservori energètic de l’organisme, actualment es parla del teixit adipós com un òrgan endocrí, metabòlicament molt actiu, implicat en diferents vies i processos metabòlics. L’etiologia de l’obesitat és complexa i multifactorial, però es fa evident en la disfuncionalitat del teixit adipós. Un teixit adipós disfuncional veu superada la seva capacitat d’emmagatzemar lípid i respon amb la hipersecreció de diferents molècules (adipoquines, citoquines i mediadors inflamatoris) a favor de la resistència a la insulina, proinflamatòries i proaterogèniques. La fatty acid-binding protein 4 (FABP4) i la retinol-binding protein 4 (RBP4) són dues adipoquines que en circulació, es desconeix la funció exacta que duen a terme. Estudis recents han suggerit la FABP4 com a marcador d’adipositat, síndrome metabòlica i diabetis tipus 2. I, RBP4, malgrat que les dades de diferents estudis en humans desperten certa controvèrsia, s’ha associat amb la resistència a la insulina i el desenvolupament de la diabetis tipus 2. En aquesta memòria es recullen els treballs en què es va estudiar el paper d’aquestes adipoquines en relació a malalties de base metabòlica amb afectació del teixit adipós com són la síndrome metabòlica, la diabetis tipus 2, la hiperlipèmia familiar combinada i la, lipodistrofia associada a tractament combinat antiretroviral de la infecció pel virus de la immunodeficiència humana (VIH).
Resumo:
Hi ha diversos mètodes d'anàlisi que duen a terme una agrupació global de la sèries de mostres de microarrays, com SelfOrganizing Maps, o que realitzen agrupaments locals tenint en compte només un subconjunt de gens coexpressats, com Biclustering, entre d'altres. En aquest projecte s'ha desenvolupat una aplicació web: el PCOPSamplecl, és una eina que pertany als mètodes d'agrupació (clustering) local, que no busca subconjunts de gens coexpresats (anàlisi de relacions linials), si no parelles de gens que davant canvis fenotípics, la seva relació d'expressió pateix fluctuacions. El resultats del PCOPSamplecl seràn les diferents distribucions finals de clusters i les parelles de gens involucrades en aquests canvis fenotípics. Aquestes parelles de gens podràn ser estudiades per trobar la causa i efecte del canvi fenotípic. A més, l'eina facilita l'estudi de les dependències entre les diferents distribucions de clusters que proporciona l'aplicació per poder estudiar la intersecció entre clusters o l'aparició de subclusters (2 clusters d'una mateixa agrupació de clusters poden ser subclusters d'altres clusters de diferents distribucions de clusters). L'eina és disponible al servidor: http://revolutionresearch.uab.es/
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
El terme paisatge i les seves aplicacions són cada dia més utilitzats per les administracions i altres entitats com a eina de gestió del territori. Aprofitant la gran quantitat de dades en bases compatibles amb SIG (Sistemes d’Informació Geogràfica) existents a Catalunya s’ha desenvolupat una síntesi cartogràfica on s’identifiquen els Paisatges Funcionals (PF) de Catalunya, concepte que fa referència al comportament fisico-ecològic del terreny a partir de variables topogràfiques i climàtiques convenientment transformades i agregades. S’ha utilitzat un mètode semiautomàtic i iteratiu de classificació no supervisada (clustering) que permet la creació d’una llegenda jeràrquica o nivells de generalització. S’ha obtingut com a resultat el Mapa de Paisatges Funcionals de Catalunya (MPFC) amb una llegenda de 26 categories de paisatges i 5 nivells de generalització amb una resolució espacial de 180 m. Paral·lelament, s’han realitzat validacions indirectes sobre el mapa obtingut a partir dels coneixements naturalistes i la cartografia existent, així com també d’un mapa d’incertesa (aplicant lògica difusa) que aporten informació de la fiabilitat de la classificació realitzada. Els Paisatges Funcionals obtinguts permeten relacionar zones de condicions topo-climàtiques homogènies i dividir el territori en zones caracteritzades ambientalment i no políticament amb la intenció que sigui d’utilitat a l’hora de millorar la gestió dels recursos naturals i la planificació d’actuacions humanes.
Resumo:
In 2000 the European Statistical Office published the guidelines for developing theHarmonized European Time Use Surveys system. Under such a unified framework,the first Time Use Survey of national scope was conducted in Spain during 2002–03. The aim of these surveys is to understand human behavior and the lifestyle ofpeople. Time allocation data are of compositional nature in origin, that is, they aresubject to non-negativity and constant-sum constraints. Thus, standard multivariatetechniques cannot be directly applied to analyze them. The goal of this work is toidentify homogeneous Spanish Autonomous Communities with regard to the typicalactivity pattern of their respective populations. To this end, fuzzy clustering approachis followed. Rather than the hard partitioning of classical clustering, where objects areallocated to only a single group, fuzzy method identify overlapping groups of objectsby allowing them to belong to more than one group. Concretely, the probabilistic fuzzyc-means algorithm is conveniently adapted to deal with the Spanish Time Use Surveymicrodata. As a result, a map distinguishing Autonomous Communities with similaractivity pattern is drawn.Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis
Resumo:
A fundamental question in developmental biology is how tissues are patterned to give rise to differentiated body structures with distinct morphologies. The Drosophila wing disc offers an accessible model to understand epithelial spatial patterning. It has been studied extensively using genetic and molecular approaches. Bristle patterns on the thorax, which arise from the medial part of the wing disc, are a classical model of pattern formation, dependent on a pre-pattern of trans-activators and –repressors. Despite of decades of molecular studies, we still only know a subset of the factors that determine the pre-pattern. We are applying a novel and interdisciplinary approach to predict regulatory interactions in this system. It is based on the description of expression patterns by simple logical relations (addition, subtraction, intersection and union) between simple shapes (graphical primitives). Similarities and relations between primitives have been shown to be predictive of regulatory relationships between the corresponding regulatory factors in other Systems, such as the Drosophila egg. Furthermore, they provide the basis for dynamical models of the bristle-patterning network, which enable us to make even more detailed predictions on gene regulation and expression dynamics. We have obtained a data-set of wing disc expression patterns which we are now processing to obtain average expression patterns for each gene. Through triangulation of the images we can transform the expression patterns into vectors which can easily be analysed by Standard clustering methods. These analyses will allow us to identify primitives and regulatory interactions. We expect to identify new regulatory interactions and to understand the basic Dynamics of the regulatory network responsible for thorax patterning. These results will provide us with a better understanding of the rules governing gene regulatory networks in general, and provide the basis for future studies of the evolution of the thorax-patterning network in particular.
Resumo:
This study engages with the debate over the mortality crises in the former Soviet Union and Central and Eastern Europe by 1) considering at length and as complementary to each other the two most prominent explanations for the post-communist mortality crisis, stress and alcohol consumption; 2) emphasizing the importance of context by exploiting systematic similarities and differences across the region. Differential mortality trajectories reveal three country groups that cluster both spatially and in terms of economic transition experiences. The first group are the countries furthest west in which mortality rates increased minimally after the transition began. The second group experienced a severe increase in mortality rates in the early 1990s, but recovered previous levels within a few years. These countries are located peripherally to Russia and its nearest neighbours. The final group consists of countries that experienced two mortality increases or in which mortality levels had not recovered to pre-transition levels well into the 21st century. Cross-sectional time-series data analyses of men’s and women’s age and cause-specific death rates reveal that the clustering of these countries and their mortality trajectories can be partially explained by the economic context, which is argued to be linked to stress and alcohol consumption. Above and beyond many basic differences in the country groups that are held constant—including geographically and historically shared cultural, lifestyle and social characteristics—poor economic conditions account for a remarkably consistent share of excess age-specific and cause-specific deaths.
Resumo:
BACKGROUND: CODIS-STRs in Native Mexican groups have rarely been analysed for human identification and anthropological purposes. AIM:To analyse the genetic relationships and population structure among three Native Mexican groups from Mesoamerica.SUBJECTS AND METHODS: 531 unrelated Native individuals from Mexico were PCR-typed for 15 and 9 autosomal STRs (Identifiler™ and Profiler™ kits, respectively), including five population samples: Purépechas (Mountain, Valley and Lake), Triquis and Yucatec Mayas. Previously published STR data were included in the analyses. RESULTS:Allele frequencies and statistical parameters of forensic importance were estimated by population. The majority of Native groups were not differentiated pairwise, excepting Triquis and Purépechas, which was attributable to their relative geographic and cultural isolation. Although Mayas, Triquis and Purépechas-Mountain presented the highest number of private alleles, suggesting recurrent gene flow, the elevated differentiation of Triquis indicates a different origin of this gene flow. Interestingly, Huastecos and Mayas were not differentiated, which is in agreement with the archaeological hypothesis that Huastecos represent an ancestral Maya group. Interpopulation variability was greater in Natives than in Mestizos, both significant.CONCLUSION: Although results suggest that European admixture has increased the similarity between Native Mexican groups, the differentiation and inconsistent clustering by language or geography stresses the importance of serial founder effect and/or genetic drift in showing their present genetic relationships.
Resumo:
Aquest treball descriu una metodologia per classificar els verbs en català segons el seu comportament sintàctic. L’objectiu és adquirir un nombre reduït de classes bàsiques amb una precisió alta fent servir pocs recursos. Obtenir informació sobre classe sintàctica és un procés llarg i costós, però útil per a moltes tasques de PLN. Presentem com obtenir aquesta informació fent servir només un corpus amb anotació de categoria morfològica. Hem explorat tant tècniques supervisades com no supervisades. Primer presentem els experiments que fan servir un mètode supervisat per distingir automàticament entre verbs transitius i intransitius. El nostre sistema té una taxa d’error del 4,65%. Pel que fa als mètodes no supervisats (clustering), presentem dos experiments. El primer pretén classificar els verbs en transitius, intransitius i verbs que alternen amb la partícula se. El segon experiment té per objectiu fer una subclassificació entre intransitius purs i preposicional. Els resultats són uns coeficients-F de 0.84 i 0.88, respectivament.
Resumo:
Hierarchical clustering is a popular method for finding structure in multivariate data,resulting in a binary tree constructed on the particular objects of the study, usually samplingunits. The user faces the decision where to cut the binary tree in order to determine the numberof clusters to interpret and there are various ad hoc rules for arriving at a decision. A simplepermutation test is presented that diagnoses whether non-random levels of clustering are presentin the set of objects and, if so, indicates the specific level at which the tree can be cut. The test isvalidated against random matrices to verify the type I error probability and a power study isperformed on data sets with known clusteredness to study the type II error.
Resumo:
L'objectiu d'aquest treball serà fer mineria d'opinions de la xarxa social de microblogging Twitter. En primer lloc, durem a terme una tasca de classificació de sentiments fent servir un lexicó simple. A continuació, emprarem la tècnica de les regles d'associació i, finalment, farem tasques de clustering.
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.