48 resultados para Rotating Cylinders
Resumo:
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes
Resumo:
Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.
Resumo:
This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields
Resumo:
Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.
Resumo:
We report a phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bound dimers constituted by induced dipoles. The great variety of stress regimes includes nonmonotonic behaviors, multiresonances, negative viscosity effect, and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phases.
Resumo:
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
In crop rotations that include alfalfa (Medicago sativa L.), agronomic and environmental concerns mean that it is important to determine the N fertilizer contribution of this legume for subsequent crops in order to help to increase the sustainability of cropping systems. To determine the N fertilizer replacement value (FRV) of a 2-yr alfalfa crop on subsequent crops of corn (Zea mays L.) followed by wheat (Triticum aestivum L.) under irrigated Mediterranean conditions, two 4-yr rotations (alfalfa-corn-wheat and corn-corn-corn-wheat) were conducted from 2001 to 2004 in a Typic Xerofluvent soil. Corn yields were compared after two years of alfalfa and a third year of corn under monoculture and wheat yields were also compared after both rotations. Corn production after alfalfa outyielded monoculture corn at all four rates of N fertilizer application analyzed (0, 100, 200 and 300 kg N/ha). The FRV of 2-yr alfalfa for corn was about 160 kg N/ha. Wheat grown after the alfalfa-corn rotation outyielded that grown after corn under monoculture at both the rates of N studied (0 and 100 kg N/ha). The FRV of alfalfa for wheat following alfalfa-corn was about 76 kg N/ha. Soil NO3 -N content after alfalfa was greater than with the corn monoculture at all rates of N fertilizer application and this higher value persisted during the second crop after alfalfa. This was probably one of the reasons for the better yields associated with the alfalfa rotation. These results make a valuable contribution to irrigated agriculture under mediterranean conditions, show reasons for interest in rotating alfalfa with corn, and explain how it is possible to make savings when applying N fertilizer.
Resumo:
This paper reports an experiment that investigated people"s body ownership of an avatar that was observed in a virtual mirror. Twenty subjects were recruited in a within-groups study where 10 first experienced a virtual character that synchronously reflected their upper-body movements as seen in a virtual mirror, and then an asynchronous condition where the mirror avatar displayed prerecorded actions, unrelated to those of the participant. The other 10 subjects experienced the conditions in the opposite order. In both conditions the participant could carry out actions that led to elevation above ground level, as seen from their first person perspective and correspondingly in the mirror. A rotating virtual fan eventually descended to 2m above the ground. The hypothesis was that synchronous mirror reflection would result in higher subjective sense of ownership. A questionnaire analysis showed that the body ownership illusion was significantly greater for thesynchronous than asynchronous condition. Additionally participants in the synchronous condition avoided collision with the descending fan significantly more often than those in the asynchronous condition. The results of this experiment are put into context within similar experiments on multisensory correlation and body ownership within cognitive neuroscience.
Resumo:
The integration of the human brain with computers is an interesting new area of applied neuroscience, where one application is replacement of a person"s real body by a virtual representation. Here we demonstrate that a virtual limb can be made to feel part of your body if appropriate multisensory correlations are provided. We report an illusion that is invoked through tactile stimulation on a person"s hidden real right hand with synchronous virtual visual stimulation on an aligned 3D stereo virtual arm projecting horizontally out of their shoulder. An experiment with 21 male participants showed displacement of ownership towards the virtual hand, as illustrated by questionnaire responses and proprioceptive drift. A control experiment with asynchronous tapping was carried out with a different set of 20 male participants who did not experience the illusion. After 5 min of stimulation the virtual arm rotated. Evidence suggests that the extent of the illusion was also correlated with the degree of muscle activity onset in the right arm as measured by EMG during this period that the arm was rotating, for the synchronous but not the asynchronous condition. A completely virtual object can therefore be experienced as part of one"s self, which opens up the possibility that an entire virtual body could be felt as one"s own in future virtual reality applications or online games, and be an invaluable tool for the understanding of the brain mechanisms underlying body ownership.
Resumo:
We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron-spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.