114 resultados para RANDOM OPTIMIZATION
Resumo:
This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.
Resumo:
Sobriety checkpoints are not usually randomly located by traffic authorities. As such, information provided by non-random alcohol tests cannot be used to infer the characteristics of the general driving population. In this paper a case study is presented in which the prevalence of alcohol-impaired driving is estimated for the general population of drivers. A stratified probabilistic sample was designed to represent vehicles circulating in non-urban areas of Catalonia (Spain), a region characterized by its complex transportation network and dense traffic around the metropolis of Barcelona. Random breath alcohol concentration tests were performed during spring 2012 on 7,596 drivers. The estimated prevalence of alcohol-impaired drivers was 1.29%, which is roughly a third of the rate obtained in non-random tests. Higher rates were found on weekends (1.90% on Saturdays, 4.29% on Sundays) and especially at night. The rate is higher for men (1.45%) than for women (0.64%) and the percentage of positive outcomes shows an increasing pattern with age. In vehicles with two occupants, the proportion of alcohol-impaired drivers is estimated at 2.62%, but when the driver was alone the rate drops to 0.84%, which might reflect the socialization of drinking habits. The results are compared with outcomes in previous surveys, showing a decreasing trend in the prevalence of alcohol-impaired drivers over time.
Resumo:
An incentives based theory of policing is developed which can explain the phenomenon of random “crackdowns,” i.e., intermittent periods of high interdiction/surveillance. For a variety of police objective functions, random crackdowns can be part of the optimal monitoring strategy. We demonstrate support for implications of the crackdown theory using traffic data gathered by the Belgian Police Department and use the model to estimate the deterrence effectof additional resources spent on speeding interdiction.
Resumo:
In this paper we propose a general technique to develop first and second order closed-form approximation formulas for short-time options withrandom strikes. Our method is based on Malliavin calculus techniques andallows us to obtain simple closed-form approximation formulas dependingon the derivative operator. The numerical analysis shows that these formulas are extremely accurate and improve some previous approaches ontwo-assets and three-assets spread options as Kirk's formula or the decomposition mehod presented in Alòs, Eydeland and Laurence (2011).
Resumo:
We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.
Resumo:
Random coefficient regression models have been applied in differentfields and they constitute a unifying setup for many statisticalproblems. The nonparametric study of this model started with Beranand Hall (1992) and it has become a fruitful framework. In thispaper we propose and study statistics for testing a basic hypothesisconcerning this model: the constancy of coefficients. The asymptoticbehavior of the statistics is investigated and bootstrapapproximations are used in order to determine the critical values ofthe test statistics. A simulation study illustrates the performanceof the proposals.
Resumo:
This paper generalizes the original random matching model of money byKiyotaki and Wright (1989) (KW) in two aspects: first, the economy ischaracterized by an arbitrary distribution of agents who specialize in producing aparticular consumption good; and second, these agents have preferences suchthat they want to consume any good with some probability. The resultsdepend crucially on the size of the fraction of producers of each goodand the probability with which different agents want to consume eachgood. KW and other related models are shown to be parameterizations ofthis more general one.
Resumo:
Confidence in decision making is an important dimension of managerialbehavior. However, what is the relation between confidence, on the onehand, and the fact of receiving or expecting to receive feedback ondecisions taken, on the other hand? To explore this and related issuesin the context of everyday decision making, use was made of the ESM(Experience Sampling Method) to sample decisions taken by undergraduatesand business executives. For several days, participants received 4 or 5SMS messages daily (on their mobile telephones) at random moments at whichpoint they completed brief questionnaires about their current decisionmaking activities. Issues considered here include differences between thetypes of decisions faced by the two groups, their structure, feedback(received and expected), and confidence in decisions taken as well as inthe validity of feedback. No relation was found between confidence indecisions and whether participants received or expected to receivefeedback on those decisions. In addition, although participants areclearly aware that feedback can provide both confirming and disconfirming evidence, their ability to specify appropriatefeedback is imperfect. Finally, difficulties experienced inusing the ESM are discussed as are possibilities for further researchusing this methodology.
Resumo:
Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
This paper proposes a common and tractable framework for analyzingdifferent definitions of fixed and random effects in a contant-slopevariable-intercept model. It is shown that, regardless of whethereffects (i) are treated as parameters or as an error term, (ii) areestimated in different stages of a hierarchical model, or whether (iii)correlation between effects and regressors is allowed, when the sameinformation on effects is introduced into all estimation methods, theresulting slope estimator is also the same across methods. If differentmethods produce different results, it is ultimately because differentinformation is being used for each methods.
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
A systematic method to improve the quality (Q) factor of RF integrated inductors is presented in this paper. The proposed method is based on the layout optimization to minimize the series resistance of the inductor coil, taking into account both ohmic losses, due to conduction currents, and magnetically induced losses, due to eddy currents. The technique is particularly useful when applied to inductors in which the fabrication process includes integration substrate removal. However, it is also applicable to inductors on low-loss substrates. The method optimizes the width of the metal strip for each turn of the inductor coil, leading to a variable strip-width layout. The optimization procedure has been successfully applied to the design of square spiral inductors in a silicon-based multichip-module technology, complemented with silicon micromachining postprocessing. The obtained experimental results corroborate the validity of the proposed method. A Q factor of about 17 have been obtained for a 35-nH inductor at 1.5 GHz, with Q values higher than 40 predicted for a 20-nH inductor working at 3.5 GHz. The latter is up to a 60% better than the best results for a single strip-width inductor working at the same frequency.