107 resultados para Paleolithic period -- Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The causal mechanism and seasonal evolution of the internal wave field in a deep, warm, monomictic reservoirare examined through the analysis of field observations and numerical techniques. The study period extends fromthe onset of thermal stratification in the spring until midsummer in 2005. During this time, wind forcing wasperiodic, with a period of 24 h (typical of land–sea breezes), and the thermal structure in the lake wascharacterized by the presence of a shallow surface layer overlying a thick metalimnion, typical of small to mediumsized reservoirs with deep outtakes. Basin-scale internal seiches of high vertical mode (ranging from mode V3 toV5) were observed in the metalimnion. The structure of the dominant modes of oscillation changed asstratification evolved on seasonal timescales, but in all cases, their periods were close to that of the local windforcing (i.e., 24 h), suggesting a resonant response. Nonresonant oscillatory modes of type V1 and V2 becamedominant after large frontal events, which disrupted the diurnal periodicity of the wind forcing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marketing has studied the permanence of a client within an enterprise because it is a key element in the study of the value (economic) of the client (CLV). The research that they have developed is based in deterministic or random models, which allowed estimating the permanence of the client, and the CLV. However, when it is not possible to apply these schemes for not having the panel data that this model requires, the period of time of a client with the enterprise is uncertain data. We consider that the value of the current work is to have an alternative way to estimate the period of time with subjective information proper of the theory of uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada al Finnish Cancer Registry a Helsinki, Finlandia entre setembre i novembre del 2006. Davant l’increment dels tumors hepàtics en països industrialitzats, s’avaluen les tendències temporals de la malaltia hepàtica a Catalunya durant el període 1983-2002 i s’estima la tendència futura a partir de l’any 2005. L’estudi s’ha basat en dades del Registre de Mortalitat de Catalunya i de l’Institut d’Estadística de Catalunya. La malaltia hepàtica inclou diverses tipologies de tumors hepàtics i la cirrosi hepàtica. Els models edad-període-cohort s’han emprat per estimar els efectes període de mortalitat i cohort de naixement. Els resultats han mostrat que les taxes de mortalitat per cirrosi han disminuït en ambdós sexes, exceptuant els homes d’entre els 35-50 anys, pels quals la mortalitat es mantingué estable. S’han observat increments en la mortalitat per carcinoma hepatocel•lular i en els tumors de vies biliars intrahepàtiques, mentre que les projeccions mostren estabilitat en la tendència d’aquestes malalties durant el període 2005-2009. Les tendències de la mortalitat per malaltia hepàtica constatades poden ser degudes a la implementació de teràpies noves, nous mètodes de diagnòstic, infecció pel virus de l’hepatitis C d’altres factors desconeguts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte proposa materials didàctics per a un nou plantejament de les assignatures de Matemàtiques dels primers cursos de Ciències Empresarials i d'Enginyeria Tècnica, més acord amb el procés de convergència europea, basat en la realització de projectes que anomenem “Tallers de Modelització Matemàtica” (TMM) en els quals: (1) Els alumnes parteixen de situacions i problemes reals per als quals han de construir per sí mateixos els models matemàtics més adients i, a partir de la manipulació adequada d’aquests models, poden obtenir la informació necessària per donar-los resposta. (2) El treball de construcció, experimentació i avaluació dels models es realitza amb el suport de la calculadora simbòlica Wiris i del full de càlcul Excel com a instruments “normalitzats” del treball matemàtic d’estudiants i professors. (3) S’adapten els programes de les assignatures de matemàtiques de primer curs per tal de poder-les associar a un petit nombre de Tallers que parteixen de situacions adaptades a cada titulació. L’assignatura de Matemàtiques per a les Ciències Empresarials s’articula entorn de dos tallers independents: “Matrius de transició” pel que fa a l’àlgebra lineal i “Previsió de vendes” per a la modelització funcional en una variable. L’assignatura de Matemàtiques per a l’Enginyeria s’articula entorn d’un únic taller, “Models de poblacions”, que abasta la majoria de continguts del curs: successions i models funcionals en una variable, àlgebra lineal i equacions diferencials. Un conjunt d’exercicis interactius basats en la calculadora simbòlica WIRIS (Wiris-player) serveix de suport per al treball tècnic imprescindible per al desenvolupament de les dues assignatures. L’experimentació d’aquests tallers durant 2 cursos consecutius (2006/07 i 2007/08) en dues universitats catalanes (URL i UAB) ha posat en evidència tant els innegables avantatges del nou dispositiu docent per a l’aprenentatge dels estudiants, així com les restriccions institucionals que actualment dificulten la seva gestió i difusió.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to explain the speed of Vesicular Stomatitis Virus VSV infections, we develop a simple model that improves previous approaches to the propagation of virus infections. For VSV infections, we find that the delay time elapsed between the adsorption of a viral particle into a cell and the release of its progeny has a veryimportant effect. Moreover, this delay time makes the adsorption rate essentially irrelevant in order to predict VSV infection speeds. Numerical simulations are in agreement with the analytical results. Our model satisfactorily explains the experimentally measured speeds of VSV infections

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of the continuous-time equations governing the dynamics of a susceptible infected-susceptible model on heterogeneous metapopulations. These equations have been recently proposed as an alternative formulation for the spread of infectious diseases in metapopulations in a continuous-time framework. Individual-based Monte Carlo simulations of epidemic spread in uncorrelated networks are also performed revealing a good agreement with analytical predictions under the assumption of simultaneous transmission or recovery and migration processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature and its derivative at the location that separates both regions.We also derive a simplified version of this analytical expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analyticalexpressions agree well with experimental data found in the literature for a large variety of cases and substantially improve the results obtained from a previous well-known analytical expression

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopulations with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and diffusion occur sequentially in time

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most integrodifference models of biological invasions are based on the nonoverlapping-generations approximation. However, the effect of multiple reproduction events overlapping generations on the front speed can be very important especially for species with a long life spam . Only in one-dimensional space has this approximation been relaxed previously, although almost all biological invasions take place in two dimensions. Here we present a model that takes into account the overlapping generations effect or, more generally, the stage structure of the population , and we analyze the main differences with the corresponding nonoverlappinggenerations results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach to determining the speed of wave-front solutions to reaction-transport processes. This method is more accurate than previous ones. This is explicitly shown for several cases of practical interest: (i) the anomalous diffusion reaction, (ii) reaction diffusion in an advective field, and (iii) time-delayed reaction diffusion. There is good agreement with the results of numerical simulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently