110 resultados para OPTICAL CRYSTAL
Resumo:
The results of a crystal structure refinement of an anisotropic grandite garnet specimen with composition Gro36-4 And63-6 are given. The structure obtained has orthorrombic symmetry (space group Fddd) and is compared with similar results obtained by other authors. In all cases the reduction of symmetry is due to the ordering of Fe3+ and Al in octahedral sites. Non cubic structures of grandites are discussed in connection with optical, morphological an grou-th features of these minerals.
Resumo:
We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the whole spectral range. The low-energy free-carrier response was well fitted by using the classical Drude-Lorentz dielectric function. A simple two-band model allowed the resulting optical parameters to be interpreted coherently with those previously obtained from transport measurements, hence yielding the densities and the effective masses of electrons and holes.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
Optical absorption spectra and transmission electron microscopy (TEM) observations on InGaAs/InP layers under compressive strain are reported. From the band¿gap energy dispersion, the magnitude of the strain inhomogeneities. Is quantified and its microscopic origin is analyzed in view of the layer microstructure. TEM observations reveal a dislocation network at the layer interface the density of which correlates with ¿¿. It is concluded that local variations of dislocation density are responsible for the inhomogeneous strain field together with another mechanism that dominates when the dislocation density is very low.
Resumo:
The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has been studied under low-energy (long wavelength) optical excitation. Profound differences in fast visible and infrared emission dynamics have been found with respect to the high-energy (shortwavelength) case. These findings point out to a strong dependence of the energy transfer process on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than thefirst excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of optical excitation used (540 nm¿680 nm).
Resumo:
Power leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides (rib-ARROW) have been theoretically and experimentally studied as a function of wavelength and polarization of the light for different geometrical and optical parameters that characterize the rib-ARROW structure. Obtained results show that rib-ARROWs can only be fabricated with low losses in a wavelength range when determined rib configurations are adopted. Furthermore, these waveguides exhibit a polarization sensitivity that largely depends on the core-substrate refractive index difference. Together with the experimental results, theoretical calculations from different modeling methods are also presented and discussed.
Resumo:
A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.
Resumo:
We obtained Ba3Yb(BO3)3 single crystals by the flux method with solutions of the BaB2O4Na2OYb2O3 system. The evolution of the cell parameters with temperature shows a slope change at temperatures near 873 K, which may indicate a phase transition that is not observed by changes appearing in the x-ray powder patterns or by differential thermal analysis (DTA). The evolution of the diffraction patterns with the temperature shows incongruent melting at temperatures higher than 1473 K. DTA indicates that there is incongruent melting and this process is irreversible. Ba3Yb(BO3)3 has a wide transparency window from 247 to 3900 nm. We recorded optical absorption and emission spectra at room and low temperature, and we determined the splitting of Yb3+ ions. We used the reciprocity method to calculate the maximum emission cross section of 0.28 10-20 cm2 at 966 nm. The calculated lifetime of Yb3+ in Ba3Yb(BO3)3 is trad = 2.62 ms, while the measured lifetime is t = 3.80 ms.
Resumo:
This line of research of my group intends to establish a Silicon technological platform in the field of photonics allowing the development of a wide set of applications. Particularly, what is still lacking in Silicon Photonics is an efficient and integrable light source such an LED or laser. Nanocrystals in silicon oxide or nitride matrices have been recently demonstrated as competitive materials for both active components (electrically and optically driven light emitters and optical amplifiers) and passive ones (waveguides and modulators). The final goal is the achievement of a complete integration of electronic and optical functions in the same CMOS chip. The first part of this paper will introduce the structural and optical properties of LEDs fabricated from silicon nanostructures. The second will treat the interaction of such nanocrystals with rare-earth elements (Er), which lead to an efficient hybrid system emitting in the third window of optical fibers. I will present the fabrication and assessment of optical waveguide amplifiers at 1.54 ¿m for which we have been able to demonstrate recently optical gain in waveguides made from sputtered silicon suboxide materials.