51 resultados para Musculo-skeletal balance
Resumo:
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Resumo:
La relación entre el trabajo y la salud puede abordarse desde distintas perspectivas. El abordaje de los riesgos a los cuales los trabajadores están expuestos, en psicología, tiene su origen en lo que se conoce como riesgos emergentes, haciendo referencia a aquellos resultantes de la organización del trabajo. Estos se manifiestan a través de problemas como el absentismo, defectos de calidad, estrés, ansiedad, etc. y en ocasiones en trastornos músculo-esqueléticos, que somatiza el trabajador. Así pues para conseguir el bienestar del trabajador, es necesario tener en cuenta la percepción que éste tiene de las condiciones psicosociales de su trabajo. Partiendo del estudio de un puesto de trabajo, desde un punto de vista ergonómico y psicosocial, y teniendo en cuenta la sintomatología del trabajador, se pretende llegar a conclusiones que determinen y definan tareas que llevadas a la práctica resulten más saludables. Desde una perspectiva más amplia, que la mera evaluación de un puesto de trabajo, se pretende establecer relación entre el desarrollo de alteraciones músculo-esqueléticas y una serie de factores relacionados con las condiciones de trabajo. En conclusión, mediante este estudio, podemos afirmar que no sólo las exigencias ergonómicas correlacionan con trastornos músculo-esqueléticos, o los factores psicosociales con la percepción de estrés, los factores personales así como los laborales de carácter psicosocial y organizacional, pueden tener relación directa sobre la intensificación de la sintomatología por trastornos músculo-esqueléticos.
Resumo:
Background PPP1R6 is a protein phosphatase 1 glycogen-targeting subunit (PP1-GTS) abundant in skeletal muscle with an undefined metabolic control role. Here PPP1R6 effects on myotube glycogen metabolism, particle size and subcellular distribution are examined and compared with PPP1R3C/PTG and PPP1R3A/GM. Results PPP1R6 overexpression activates glycogen synthase (GS), reduces its phosphorylation at Ser-641/0 and increases the extracted and cytochemically-stained glycogen content, less than PTG but more than GM. PPP1R6 does not change glycogen phosphorylase activity. All tested PP1-GTS-cells have more glycogen particles than controls as found by electron microscopy of myotube sections. Glycogen particle size is distributed for all cell-types in a continuous range, but PPP1R6 forms smaller particles (mean diameter 14.4 nm) than PTG (36.9 nm) and GM (28.3 nm) or those in control cells (29.2 nm). Both PPP1R6- and GM-derived glycogen particles are in cytosol associated with cellular structures; PTG-derived glycogen is found in membrane- and organelle-devoid cytosolic glycogen-rich areas; and glycogen particles are dispersed in the cytosol in control cells. A tagged PPP1R6 protein at the C-terminus with EGFP shows a diffuse cytosol pattern in glucose-replete and -depleted cells and a punctuate pattern surrounding the nucleus in glucose-depleted cells, which colocates with RFP tagged with the Golgi targeting domain of β-1,4-galactosyltransferase, according to a computational prediction for PPP1R6 Golgi location. Conclusions PPP1R6 exerts a powerful glycogenic effect in cultured muscle cells, more than GM and less than PTG. PPP1R6 protein translocates from a Golgi to cytosolic location in response to glucose. The molecular size and subcellular location of myotube glycogen particles is determined by the PPP1R6, PTG and GM scaffolding.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
La reivindicación del tren de alta velocidad por parte de un número amplio y creciente de ciudades en España, aconseja una reflexión sobre qué se puede realmente esperar de este servicio para estimular el tejido económico local. Nuestra referencia será el TGV de París a Lyon, el más antiguo en Europa, con sus posteriores ampliaciones al sur. De su estudio se puede deducir que su repercusión ha resultado muy modesta como agente dinamizador de la actividad económica local y regional. En el AVE se apunta efectivamente la misma situación, a tener por tanto muy en cuenta en el diseño del nuevo trazado y en las medidas de acompañamiento para rentabilizarlo.
Resumo:
Background: Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established. Methodology/Principal Findings: We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase c, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Dym). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage. Conclusions/Significance: These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.
Resumo:
The goal of the present study is to examine cross-sectional information on the growth of the humerus based on the analysis of four measurements, namely, diaphyseal length, transversal diameter of the proximal (metaphyseal) end of the shaft, epicondylar breadth and vertical diameter of the head. This analysis was performed in 181 individuals (90 ♂ and 91 ♀) ranging from birth to 25 years of age and belonging to three documented Western European skeletal collections (Coimbra, Lisbon and St. Bride). After testing the homogeneity of the sample, the existence of sexual differences (Student"s t- and Mann-Whitney U-test) and the growth of the variables (polynomial regression) were evaluated. The results showed the presence of sexual differences in epicondylar breadth above 20 years of age and vertical diameter of the head from 15 years of age, thus indicating that these two variables may be of use in determining sex from that age onward. The growth pattern of the variables showed a continuous increase and followed first- and second-degree polynomials. However, growth of the transversal diameter of the proximal end of the shaft followed a fourth-degree polynomial. Strong correlation coefficients were identified between humeral size and age for each of the four metric variables. These results indicate that any of the humeral measurements studied herein is likely to serve as a useful means of estimating sub-adult age in forensic samples.
Resumo:
A network of twenty stakes was set up on Johnsons Glacier in order to determine its dynamics. During the austral summers from 1994-95 to 1997-98, we estimated surface velocities, mass balances and ice thickness variations. Horizontal velocity increased dow nstream from 1 m a- 1 near the ice divides to 40 m a- 1 near the ice terminus. The accumulation zone showed low accumulation rates (maximum of 0,6 m a- 1 (ice)), whereas in the lower part of the glacier, ablation rates were 4,3 m a- 1 (ice). Over the 3-year study period, both in the accumulation and ablation zones, we detected a reduction in the ice surface level ranging from 2 to 10 m from the annual ve rt ical velocities and ice-thinning data, the mass balance was obtained and compared with the mass balance field values, resulting in similar estimates. Flux values were calculated using cross-section data and horizontal velocities, and compared with the results obtained by means of mass balance and ice thinning data using the continuity equation. The two methods gave similar results.
Resumo:
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.
Resumo:
Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (676 8 years; forced expiratory volume in 1s (FEV1)456 8%ref) and 10 healthy controls (666 4 years; FEV1 906 7% ref) cycled 45 min above LT (65% peak oxygen uptake (V9O2 peak)and another 7 patients (656 6 years; FEV1 506 4%ref)and 7 controls (566 9 years;FEV1 926 6%ref) cycled 45 min below their LT (50% V9O2 peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor- g coactivator-1 a (PGC-1a)mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V9O2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1 a mRNA and returned to baseline values 1 week later. This pattern of response wa was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1 a mRNA seen in healthy subjects probably due to oxidative stress.
Resumo:
Objective: To compare lower incisor dentoalveolar compensation and mandible symphysis morphology among Class I and Class III malocclusion patients with different facial vertical skeletal patterns. Materials and Methods: Lower incisor extrusion and inclination, as well as buccal (LA) and lingual (LP) cortex depth, and mandibular symphysis height (LH) were measured in 107 lateral cephalometric x-rays of adult patients without prior orthodontic treatment. In addition, malocclusion type (Class I or III) and facial vertical skeletal pattern were considered. Through a principal component analysis (PCA) related variables were reduced. Simple regression equation and multivariate analyses of variance were also used. Results: Incisor mandibular plane angle (P < .001) and extrusion (P = .03) values showed significant differences between the sagittal malocclusion groups. Variations in the mandibular plane have a negative correlation with LA (Class I P = .03 and Class III P = .01) and a positive correlation with LH (Class I P = .01 and Class III P = .02) in both groups. Within the Class III group, there was a negative correlation between the mandibular plane and LP (P = .02). PCA showed that the tendency toward a long face causes the symphysis to elongate and narrow. In Class III, alveolar narrowing is also found in normal faces. Conclusions: Vertical facial pattern is a significant factor in mandibular symphysis alveolar morphology and lower incisor positioning, both for Class I and Class III patients. Short-faced Class III patients have a widened alveolar bone. However, for long-faced and normal-faced Class III, natural compensation elongates the symphysis and influences lower incisor position.
Resumo:
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co- ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.
Resumo:
El estudio analiza el nivel de cumplimiento que el año 2006 hacían las sedes web de las universidades españolas de las Pautas de accesibilidad al contenido de la web (WCAG), versión 1.0, en su nivel A. Los resultados del análisis se comparan con los obtenidos el año 2001. Por el lado positivo se observa una mayor implantación de las alternativas a gráfi cos, hojas de estilo CSS y de las alternativas a Flash y PDF; y que un número mayor de universidades (10 en total) logra en 2006 un cumplimiento al 100 % del nivel A de las WCAG. Por el lado negativo se observa una peor calidad de los textos y un menor cumplimiento de las normas de accesibilidad, respecto a los resultados del año 2001, en las páginas de los planes de estudio, usualmente generadas de forma automática. El estudio, de forma complementaria, también analiza el nivel de seguimiento de los indicadores de la norma 508 de Estados Unidos y de otros 5 indicadores adicionales de usabilidad. En cuanto al cumplimiento de la norma 508, no obligatoria en España, ninguna universidad logra el 100 % de cumplimiento. Respecto a los otros indicadores el cumplimiento es de un 65 %. Como resultado global se constata que el nivel de accesibilidad sigue en niveles bajos, similar al del año 2001, y con grandes diferencias entre centros; estos resultados indican un nivel de cumplimiento menor del que cabría esperar por los cambios aplicados en la legislación española a favor de la accesibilidad de los sitios web.