39 resultados para Mature fields
Resumo:
The relationship between yield, carbon isotope discrimination and ash content in mature kernels was examined for a set of 13 barley (Hordeum vulgare) cultivars. Plants were grown under rainfed and well-irrigated conditions in a Mediterranean area. Water deficit caused a decrease in both grain yield and carbon isotope discrimination (Δ). The yield was positively related to Δ and negatively related to ash content, across genotypes within each treatment. However, whereas the correlation between yield and Δ was higher for the set of genotypes under well-irrigated (r=0.70, P<0.01) than under rainfed (r=0.42) conditions, the opposite occurred when yield and ash content were related, ie r=-0.38 under well-irrigated and r=-0.73, (P<0.01) under rainfed conditions. Carbon isotope discrimination and ash content together account for almost 60% of the variation in yield, in both conditions. There was no significant relationship (r=-0.15) between carbon isotope discrimination and ash content in well-irrigated plants, whereas in rainfed plants, this relationship, although significant (r=-0.54, P< 0.05), was weakly negative. The concentration of several mineral elements was measured in the same kernels. The mineral that correlated best with ash content, yield and A, was K. For yield and Δ, although the relationship with K followed the same pattern as the relationhip with ash content, the correlation coefficients were lower. Thus, mineral accumulation in mature kernels seems to be independent of transpiration efficiency. In fact, filling of grains takes place through the phloem pathway. The ash content in kernels is proposed as a complementary criterion, in addition to kernel Δ, to assess genotype differences in barley grain yield under rainfed conditions.
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.
Resumo:
The contribution of the propagating and the evanescent waves associated with freely propagating non-paraxial light fields whose transverse component is azimuthally polarized at some plane is investigated. Analytic expressions are derived for describing both the spatial shape and the relative weight of the propagating and the evanescent components integrated over the transverse plane. The analysis is carried out within the framework of the plane-wave angular spectrum approach. These results are used to illustrate the behavior of a kind of donut-like beams with transverse azimuthal polarization at some plane.
Resumo:
Background: TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results: Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions: This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction.
Resumo:
We develop a method for generating focused vector beams with circular polarization at any transverse plane. Based on the Richards-Wolf vector model, we derive analytical expressions to describe the propagation of these set of beams near the focal area. Since the polarization and the amplitude of the input beam are not uniform, an interferometric system capable of generating spatially-variant polarized beams has to be used. In particular, this wavefront is manipulated by means of spatial light modulators displaying computer generated holograms and subsequently focused using a high numerical aperture objective lens. Experimental results using a NA=0.85 system are provided: irradiance and Stokes images of the focused field at different planes near the focal plane are presented and compared with those obtained by numerical simulation.
Resumo:
The analysis of paraxial Gaussian beams features in most undergraduate courses in laser physics, advanced optics and photonics. These beams provide a simple model of the field generated in the resonant cavities of lasers, thus constituting a basic element for understanding laser theory. Usually, uniformly polarized beams are considered in the analytical calculations, with the electric field vibrating at normal planes to the propagation direction. However, such paraxial fields do not verify the Maxwell equations. In this paper we discuss how to overcome this apparent contradiction and evaluate the longitudinal component that any paraxial Gaussian beam should exhibit. Despite the fact that the assumption of a purely transverse paraxial field is useful and accurate, the inclusion of the above issue in the program helps students to clarify the importance of the electromagnetic nature of light, thus providing a more complete understanding of the paraxial approach.
Resumo:
A comparison is established between the contributions of transverse and longitudinal components of both the propagating and the evanescent waves associated to freely propagating radially polarized nonparaxial beams. Attention is focused on those fields that remain radially polarized upon propagation. In terms of the plane-wave angular spectrum of these fields, analytical expressions are given for determining both the spatial shape of the above components and their relative weight integrated over the whole transverse plane. The results are applied to two kinds of doughnut-like beams with radial polarization, and we compare the behavior of such fields at two transverse planes.
Resumo:
Research on the properties of highly focused fields mainly involved fully polarized light, whereas partially polarized waves received less attention. The aim of this Letter is to provide an appropriate framework, for designing some features of the focused field, when dealing with incoming partially polarized beams. In particular, in this Letter, we describe how to get an unpolarized field on the axis of a high numerical aperture objective lens. Some numerical results that corroborate theoretical predictions are provided.