73 resultados para Mathematical Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two principal chemical concepts that are important for studying the naturalenvironment. The first one is thermodynamics, which describes whether a system is atequilibrium or can spontaneously change by chemical reactions. The second main conceptis how fast chemical reactions (kinetics or rate of chemical change) take place wheneverthey start. In this work we examine a natural system in which both thermodynamics andkinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 insuperficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system inwhich natural and antrophic effects both contribute to highly modify the chemical compositionof water. Thermodynamical modelling based on the reduction-oxidation reactionsinvolving the passage NH+4 -& NO−2 -& NO−3 in equilibrium conditions has allowed todetermine the Eh redox potential values able to characterise the state of each sample and,consequently, of the fluid environment from which it was drawn. Just as pH expressesthe concentration of H+ in solution, redox potential is used to express the tendency of anenvironment to receive or supply electrons. In this context, oxic environments, as thoseof river systems, are said to have a high redox potential because O2 is available as anelectron acceptor.Principles of thermodynamics and chemical kinetics allow to obtain a model that oftendoes not completely describe the reality of natural systems. Chemical reactions may indeedfail to achieve equilibrium because the products escape from the site of the rectionor because reactions involving the trasformation are very slow, so that non-equilibriumconditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understoodcatalytic effects or to surface effects, while variables as concentration (a largenumber of chemical species can coexist and interact concurrently), temperature and pressurecan have large gradients in natural systems. By taking into account this, data of 91water samples have been modelled by using statistical methodologies for compositionaldata. The application of log–contrast analysis has allowed to obtain statistical parametersto be correlated with the calculated Eh values. In this way, natural conditions in whichchemical equilibrium is hypothesised, as well as underlying fast reactions, are comparedwith those described by a stochastic approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we develop a viscoelastic bar element that can handle multiple rheo- logical laws with non-linear elastic and non-linear viscous material models. The bar element is built by joining in series an elastic and viscous bar, constraining the middle node position to the bar axis with a reduction method, and stati- cally condensing the internal degrees of freedom. We apply the methodology to the modelling of reversible softening with sti ness recovery both in 2D and 3D, a phenomenology also experimentally observed during stretching cycles on epithelial lung cell monolayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document de l'arxiu adjunt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità) del desembre de 2006, sobre un model matemàtic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità, ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By anessential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur inmany compositional situations, such as household budget patterns, time budgets,palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful insuch situations. From consideration of such examples it seems sensible to build up amodel in two stages, the first determining where the zeros will occur and the secondhow the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A four compartment model of the cardiovascular system is developed. To allow for easy interpretation and to minimise the number of parameters, an effort was made to keep the model as simple as possible. A sensitivity analysis is first carried out to determine which are the most important model parameters to characterise the blood pressure signal. A four stage process is then described which accurately determines all parameter values. This process is applied to data from three patients and good agreement is shown in all cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nessie is an Autonomous Underwater Vehicle (AUV) created by a team of students in the Heriot Watt University to compete in the Student Autonomous Underwater Competition, Europe (SAUC-E) in August 2006. The main objective of the project is to find the dynamic equation of the robot, dynamic model. With it, the behaviour of the robot will be easier to understand and movement tests will be available by computer without the need of the robot, what is a way to save time, batteries, money and the robot from water inside itself. The object of the second part in this project is setting a control system for Nessie by using the model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la University of British Columbia, Canadà, entre 2010 i 2012 La malaltia d'Alzheimer (MA) representa avui la forma més comuna de demència en la població envellida. Malgrat fa 100 anys que va ser descoberta, encara avui no existeix cap tractament preventiu i/o curatiu ni cap agent de diagnòstic que permeti valorar quantitativament l'evolució d'aquesta malaltia. L'objectiu en el que s'emmarca aquest treball és contribuir a aportar solucions al problema de la manca d'agents terapèutics i de diagnosi, unívocs i rigorosos, per a la MA. Des del camp de la química bioinorgànica és fàcil fixar-se en l'excessiva concentració d'ions Zn(II) i Cu(II) en els cervells de malalts de MA, plantejar-se la seva utilització com a dianes terapèutica i, en conseqüència, cercar agents quelants que evitin la formació de plaques senils o contribueixin a la seva dissolució. Si bé aquest va ser el punt de partida d’aquest projecte, els múltiples factors implicats en la patogènesi de la MA fan que el clàssic paradigma d’ ¨una molècula, una diana¨ limiti la capacitat de la molècula de combatre aquesta malaltia tan complexa. Per tant, un esforç considerable s’ha dedicat al disseny d’agentsmultifuncionals que combatin els múltiples factors que caracteritzen el desenvolupament de la MA. En el present treball s’han dissenyat agents multifuncionals inspirats en dos esquelets moleculars ben establers i coneguts en el camp de la química medicinal: la tioflavina-T (ThT) i la deferiprona (DFP). La utilització de tècniques in silico que inclouen càlculs farmacocinètics i modelatge molecular ha estat un procés cabdal per a l’avaluació dels millors candidats en base als següents requeriments: (a) compliment de determinades propietats farmacocinètiques que estableixin el seu possible ús com a fàrmac (b) hidrofobicitat adequada per travessar la BBB i (c) interacció amb el pèptid Aen solució.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the disadvantages of old age is that there is more past than future: this,however, may be turned into an advantage if the wealth of experience and, hopefully,wisdom gained in the past can be reflected upon and throw some light on possiblefuture trends. To an extent, then, this talk is necessarily personal, certainly nostalgic,but also self critical and inquisitive about our understanding of the discipline ofstatistics. A number of almost philosophical themes will run through the talk: searchfor appropriate modelling in relation to the real problem envisaged, emphasis onsensible balances between simplicity and complexity, the relative roles of theory andpractice, the nature of communication of inferential ideas to the statistical layman, theinter-related roles of teaching, consultation and research. A list of keywords might be:identification of sample space and its mathematical structure, choices betweentransform and stay, the role of parametric modelling, the role of a sample spacemetric, the underused hypothesis lattice, the nature of compositional change,particularly in relation to the modelling of processes. While the main theme will berelevance to compositional data analysis we shall point to substantial implications forgeneral multivariate analysis arising from experience of the development ofcompositional data analysis…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.