55 resultados para Exponential distributions
Resumo:
We report variational calculations, in the hypernetted-chain (HNC)-Fermi-HNC scheme, of one-body density matrices and one-particle momentum distributions for 3He-4He mixtures described by a Jastrow correlated wave function. The 4He condensate fractions and the 3He strength poles are examined and compared with the Monte Carlo available results. The agreement has been found to be very satisfactory. Their density dependence is also studied.
Resumo:
Methods for generating beams with arbitrary polarization based on the use of liquid crystal displays have recently attracted interest from a wide range of sources. In this paper we present a technique for generating beams with arbitrary polarization and shape distributions at a given plane using a Mach-Zehnder setup. The transverse components of the incident beam are processed independently by means of spatial light modulators placed in each path of the interferometer. The modulators display computer generated holograms designed to dynamically encode any amplitude value and polarization state for each point of the wavefront in a given plane. The steps required to design such beams are described in detail. Several beams performing different polarization and intensity landscapes have been experimentally implemented. The results obtained demonstrate the capability of the proposed technique to tailor the amplitude and polarization of the beam simultaneously.
Resumo:
We develop a method to obtain first-passage-time statistics for non-Markovian processes driven by dichotomous fluctuations. The fluctuations themselves need not be Markovian. We calculate analytic first-passage-time distributions and mean first-passage times for exponential, rectangular, and long-tail temporal distributions of the fluctuations.
Resumo:
Our previously developed stochastic trajectory analysis technique has been applied to the calculation of first-passage time statistics of bound processes. Explicit results are obtained for linearly bound processes driven by dichotomous fluctuations having exponential and rectangular temporal distributions.
Resumo:
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollardeutsche mark future exchange, finding good agreement between theory and the observed data.
Resumo:
We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
The present study explores the statistical properties of a randomization test based on the random assignment of the intervention point in a two-phase (AB) single-case design. The focus is on randomization distributions constructed with the values of the test statistic for all possible random assignments and used to obtain p-values. The shape of those distributions is investigated for each specific data division defined by the moment in which the intervention is introduced. Another aim of the study consisted in testing the detection of inexistent effects (i.e., production of false alarms) in autocorrelated data series, in which the assumption of exchangeability between observations may be untenable. In this way, it was possible to compare nominal and empirical Type I error rates in order to obtain evidence on the statistical validity of the randomization test for each individual data division. The results suggest that when either of the two phases has considerably less measurement times, Type I errors may be too probable and, hence, the decision making process to be carried out by applied researchers may be jeopardized.
Resumo:
Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.
Resumo:
This paper introduces a mixture model based on the beta distribution, without preestablishedmeans and variances, to analyze a large set of Beauty-Contest data obtainedfrom diverse groups of experiments (Bosch-Domenech et al. 2002). This model gives a bettert of the experimental data, and more precision to the hypothesis that a large proportionof individuals follow a common pattern of reasoning, described as iterated best reply (degenerate),than mixture models based on the normal distribution. The analysis shows thatthe means of the distributions across the groups of experiments are pretty stable, while theproportions of choices at dierent levels of reasoning vary across groups.
Resumo:
This correspondence studies the formulation of members ofthe Cohen-Posch class of positive time-frequency energy distributions.Minimization of cross-entropy measures with respect to different priorsand the case of no prior or maximum entropy were considered. It isconcluded that, in general, the information provided by the classicalmarginal constraints is very limited, and thus, the final distributionheavily depends on the prior distribution. To overcome this limitation,joint time and frequency marginals are derived based on a "directioninvariance" criterion on the time-frequency plane that are directly relatedto the fractional Fourier transform.
Resumo:
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.
Resumo:
The GS-distribution is a family of distributions that provide an accurate representation of any unimodal univariate continuous distribution. In this contribution we explore the utility of this family as a general model in survival analysis. We show that the survival function based on the GS-distribution is able to provide a model for univariate survival data and that appropriate estimates can be obtained. We develop some hypotheses tests that can be used for checking the underlying survival model and for comparing the survival of different groups.
Resumo:
A study of the angular distributions of leptons from decays of J/ψ"s produced in p-C and p-W collisions at s√=41.6~GeV has been performed in the J/ψ Feynman-x region −0.34