66 resultados para Differential Pulse Voltammetry
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.
Resumo:
We have developed a differential scanning calorimeter capable of working under applied magnetic fields of up to 5 T. The calorimeter is highly sensitive and operates over the temperature range 10¿300 K. It is shown that, after a proper calibration, the system enables determination of the latent heat and entropy changes in first-order solid¿solid phase transitions. The system is particularly useful for investigating materials that exhibit the giant magnetocaloric effect arising from a magnetostructural phase transition. Data for Gd5(Si0.1Ge0.9)4 are presented.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By means of computer simulations we find the relation between the intrinsic dynamics of each member of the population and their mutual interactions that ensures, in a general context, the existence of a fully synchronized regime. This condition turns out to be the same as that obtained for the globally coupled population. When the condition is not completely satisfied we find different spatial structures. This also gives some hints about self-organized criticality.
Resumo:
We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a pefect agreement with numerical simulations.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
We analyze the physical mechanisms leading either to synchronization or to the formation of spatiotemporal patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a mathematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Furthermore, we show that this stability is the responsible for the different behaviors.
Resumo:
A generalization of the predictive relativistic mechanics is studied where the initial conditions are taken on a general hypersurface of M4. The induced realizations of the Poincar group are obtained. The same procedure is used for the Galileo group. Noninteraction theorems are derived for both groups.
Resumo:
We have developed a differential scanning calorimeter capable of working under applied magnetic fields of up to 5 T. The calorimeter is highly sensitive and operates over the temperature range 10¿300 K. It is shown that, after a proper calibration, the system enables determination of the latent heat and entropy changes in first-order solid¿solid phase transitions. The system is particularly useful for investigating materials that exhibit the giant magnetocaloric effect arising from a magnetostructural phase transition. Data for Gd5(Si0.1Ge0.9)4 are presented.
Resumo:
[cat] A Navas i Marín Solano es va demostrar la coincidència entre els equilibris de Nash i de Stackelberg per a una versi´o modificada del joc diferencial proposat por Lancaster (1973). Amb l’objectiu d’obtenir una solució interior, es van imposar restriccions importants sobre el valors dels paràmetres del model. En aquest treball estenem aquest resultat, en el límit en que la taxa de descompte és igual a zero, eliminant les restriccions i considerant totes les solucions possibles.
Resumo:
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Resumo:
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.
Resumo:
We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields