79 resultados para Continuous constraint programming
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
We obtain a recursive formulation for a general class of contractingproblems involving incentive constraints. Under these constraints,the corresponding maximization (sup) problems fails to have arecursive solution. Our approach consists of studying the Lagrangian.We show that, under standard assumptions, the solution to theLagrangian is characterized by a recursive saddle point (infsup)functional equation, analogous to Bellman's equation. Our approachapplies to a large class of contractual problems. As examples, westudy the optimal policy in a model with intertemporal participationconstraints (which arise in models of default) and intertemporalcompetitive constraints (which arise in Ramsey equilibria).
Resumo:
We present a new unifying framework for investigating throughput-WIP(Work-in-Process) optimal control problems in queueing systems,based on reformulating them as linear programming (LP) problems withspecial structure: We show that if a throughput-WIP performance pairin a stochastic system satisfies the Threshold Property we introducein this paper, then we can reformulate the problem of optimizing alinear objective of throughput-WIP performance as a (semi-infinite)LP problem over a polygon with special structure (a thresholdpolygon). The strong structural properties of such polygones explainthe optimality of threshold policies for optimizing linearperformance objectives: their vertices correspond to the performancepairs of threshold policies. We analyze in this framework theversatile input-output queueing intensity control model introduced byChen and Yao (1990), obtaining a variety of new results, including (a)an exact reformulation of the control problem as an LP problem over athreshold polygon; (b) an analytical characterization of the Min WIPfunction (giving the minimum WIP level required to attain a targetthroughput level); (c) an LP Value Decomposition Theorem that relatesthe objective value under an arbitrary policy with that of a giventhreshold policy (thus revealing the LP interpretation of Chen andYao's optimality conditions); (d) diminishing returns and invarianceproperties of throughput-WIP performance, which underlie thresholdoptimality; (e) a unified treatment of the time-discounted andtime-average cases.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
When can a single variable be more accurate in binary choice than multiple sources of information? We derive analytically the probability that a single variable (SV) will correctly predict one of two choices when both criterion and predictor are continuous variables. We further provide analogous derivations for multiple regression (MR) and equal weighting (EW) and specify the conditions under which the models differ in expected predictive ability. Key factors include variability in cue validities, intercorrelation between predictors, and the ratio of predictors to observations in MR. Theory and simulations are used to illustrate the differential effects of these factors. Results directly address why and when one-reason decision making can be more effective than analyses that use more information. We thus provide analytical backing to intriguing empirical results that, to date, have lacked theoretical justification. There are predictable conditions for which one should expect less to be more.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to program small, devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
This work presents an alternative to generate continuous phase shift of sinusoidal signals based on the use of super harmonic injection locked oscillators (ILO). The proposed circuit is a second harmonic ILO with varactor diodes as tuning elements. In the locking state, by changing the varactor bias, a phase shift instead of a frequency shift is observed at the oscillator output. By combining two of these circuits, relative phases up to 90 could be achieved. Two prototypes of the circuit have been implemented and tested, a hybrid version working in the range of 200-300 MHz and a multichip module (MCM) version covering the 900¿1000 MHz band.
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.
Resumo:
[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.
Resumo:
Dirac's constraint Hamiltonian formalism is used to construct a gauge-invariant action for the massive spin-one and -two fields.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollardeutsche mark future exchange, finding good agreement between theory and the observed data.