39 resultados para Continuous Casting
Resumo:
The continuous wavelet transform is obtained as a maximumentropy solution of the corresponding inverse problem. It is well knownthat although a signal can be reconstructed from its wavelet transform,the expansion is not unique due to the redundancy of continuous wavelets.Hence, the inverse problem has no unique solution. If we want to recognizeone solution as "optimal", then an appropriate decision criterion hasto be adopted. We show here that the continuous wavelet transform is an"optimal" solution in a maximum entropy sense.
Resumo:
[eng] The group of teaching innovation in the area of Botany (GIBAF), University of Barcelona (UB), is raised each year to design new accreditation activities under continuous evaluation framework. We present the experience carried out during the academic year 2008-09 in the course of Pharmaceutical Botany. The aim has been to involve students for a semester in the authorship of a tutored project immediately useful and of easy permanence, beyond its assessment proving usefulness. The Medicinal Plants Garden of the Monastery of Pedralbes has been used as a resource and a collaboration agreement has been signed between the UB faculty and the Institute of Culture of Barcelona. The students have developed the work using the Moodle platform CampusvirtualUB into five stages which included preparation of files by students that have been modified in some steps following the various feedbacks from teachers. At the beginning of the activity, students were provided with a complete schedule of activities, the schedule for its implementation, and a total of 18 forced-use library resources. Finally, through Google sites, a website has been implemented, allowing for a virtual tour of the garden, documenting by referenced literature 50 medicinal plants for their nomenclature, botanical description, distribution, uses historical, current and future) and toxicity. The result of the activity was presented at a public ceremony in the Monastery of Pedralbes and is available at: http://sites.google.com/site/jardimedievalpedralbes/ [spa] El grupo de innovación docente integrado por profesores del área de Botánica (GIBAF) de la Universidad de Barcelona (UB) se plantea cada curso el diseño de nuevas actividades acreditativas en el marco de la evaluación continuada. Se presenta la experiencia llevada a cabo durante el curso 2008-09 en la asignatura Botánica Farmacéutica. El objetivo ha sido implicar durante un semestre a los estudiantes en la autoría de un proyecto tutorizado de inmediata utilidad y clara perdurabilidad, más allá de su utilidad acreditativa. Como recurso se ha utilizado el Jardín de Plantas Medicinales del Monasterio de Pedralbes y se ha firmado un convenio de colaboración docente entre la UB y el Instituto de Cultura de Barcelona. Los estudiantes han realizado el trabajo utilizando la plataforma Moodle del Campus virtual de la UB en cinco etapas que han incluido la confección de unas fichas que se han ido modificando en función de las diversas retroacciones de los profesores. Al inicio de la actividad, se facilitó a los estudiantes el cronograma completo de la actividad, la pauta para su realización, así como un total de 18 recursos bibliográficos de uso obligado. Finalmente, a través de GoogleSites, se ha realizado una web que permite realizar un paseo virtual por el jardín, documentando de forma referenciada para las 50 plantas medicinales su nomenclatura, descripción botánica, distribución, usos (históricos, actuales y futuros) y toxicidad. El resultado de la actividad fue presentado en un acto público en el Monasterio de Pedralbes y puede consultarse en: http://sites.google.com/site/jardimedievalpedralbes/
Resumo:
Let $S_*$ and $S_*^\{infty}$ be the functors of continuous and differentiable singular chains on the category of differentiable manifolds. We prove that the natural transformation $i: S_*^\infty \rightarrow S_*$, which induces homology equivalences over each manifold, is not a natural homotopy equivalence.
Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation
Resumo:
In this paper we describe a new Mueller matrix (MM) microscope that generalizes and makes quantitative the polarized light microscopy technique. In this instrument all the elements of the MU are simultaneously determined from the analysis in the frequency domain of the time-dependent intensity of the light beam at every pixel of the camera. The variations in intensity are created by the two compensators continuously rotating at different angular frequencies. A typical measurement is completed in a little over one minute and it can be applied to any visible wavelength. Some examples are presented to demonstrate the capabilities of the instrument.
Resumo:
Introducción. Uno de los paradigmas más utilizados en el estudio de la atención es el Continuous Performance Test (CPT). La versión de pares idénticos (CPT-IP) se ha utilizado ampliamente para evaluar los déficits de atención en los trastornos del neurodesarrollo, neurológicos y psiquiátricos. Sin embargo, la localización de la activación cerebral de las redes atencionales varía significativamente según el diseño de resonancia magnética funcional (RMf) usado. Objetivo. Diseñar una tarea para evaluar la atención sostenida y la memoria de trabajo mediante RMf para proporcionar datos de investigación relacionados con la localización y el papel de estas funciones. Sujetos y métodos. El estudio contó con la participación de 40 estudiantes, todos ellos diestros (50%, mujeres; rango: 18-25 años). La tarea de CPT-IP se diseñó como una tarea de bloques, en la que se combinaban los períodos CPT-IP con los de reposo. Resultados. La tarea de CPT-IP utilizada activa una red formada por regiones frontales, parietales y occipitales, y éstas se relacionan con funciones ejecutivas y atencionales. Conclusiones. La tarea de CPT-IP utilizada en nuestro trabajo proporciona datos normativos en adultos sanos para el estudio del sustrato neural de la atención sostenida y la memoria de trabajo. Estos datos podrían ser útiles para evaluar trastornos que cursan con déficits en memoria de trabajo y en atención sostenida.
Resumo:
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
Resumo:
We generalize to arbitrary waiting-time distributions some results which were previously derived for discrete distributions. We show that for any two waiting-time distributions with the same mean delay time, that with higher dispersion will lead to a faster front. Experimental data on the speed of virus infections in a plaque are correctly explained by the theoretical predictions using a Gaussian delay-time distribution, which is more realistic for this system than the Dirac delta distribution considered previously [J. Fort and V. Méndez, Phys. Rev. Lett.89, 178101 (2002)]