The differentiable chain functor is not homotopy equivalent to the continuous chain functor
| Contribuinte(s) |
Universitat de Barcelona |
|---|---|
| Resumo |
Let $S_*$ and $S_*^\{infty}$ be the functors of continuous and differentiable singular chains on the category of differentiable manifolds. We prove that the natural transformation $i: S_*^\infty \rightarrow S_*$, which induces homology equivalences over each manifold, is not a natural homotopy equivalence. |
| Identificador | |
| Idioma(s) |
eng |
| Publicador |
Elsevier B.V. |
| Direitos |
(c) Elsevier B.V., 2009 info:eu-repo/semantics/openAccess |
| Palavras-Chave | #Topologia diferencial #Topologia algebraica #Àlgebra homològica #Differential topology #Algebraic topology #Homological algebra |
| Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion |