58 resultados para Automatic segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melodic motifs form essential building blocks in Indian Classical music. The motifs, or key phrases, providestrong cues to the identity of the underlying raga in both Hindustani and Carnatic styles of Indian music. Automatic identification and clustering of similar motifs is relevant in this context. The inherent variations in various instances of a characteristic phrase in a bandish (composition)performance make it challenging to identify similar phrases in a performance. A nyas svara (long note)marks the ending of these phrases. The proposed method does segmentation of phrases through identification ofnyas and computes similarity with the reference characteristic phrase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although paraphrasing is the linguistic mechanism underlying many plagiarism cases, little attention has been paid to its analysis in the framework of automatic plagiarism detection. Therefore, state-of-the-art plagiarism detectors find it difficult to detect cases of paraphrase plagiarism. In this article, we analyse the relationship between paraphrasing and plagiarism, paying special attention to which paraphrase phenomena underlie acts of plagiarism and which of them are detected by plagiarism detection systems. With this aim in mind, we created the P4P corpus, a new resource which uses a paraphrase typology to annotate a subset of the PAN-PC-10 corpus for automatic plagiarism detection. The results of the Second International Competition on Plagiarism Detection were analysed in the light of this annotation. The presented experiments show that (i) more complex paraphrase phenomena and a high density of paraphrase mechanisms make plagiarism detection more difficult, (ii) lexical substitutions are the paraphrase mechanisms used the most when plagiarising, and (iii) paraphrase mechanisms tend to shorten the plagiarized text. For the first time, the paraphrase mechanisms behind plagiarism have been analysed, providing critical insights for the improvement of automatic plagiarism detection systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyses different factors that influence the purchasing behaviour of online supermarket customers. These factors are related to both the appearance of the website as well as the processes that take place when making the purchase. Based on these analyses, the various groups of consumers with homogenous behaviour are studied and positioned according to their attitudes. The analysis also allows the quality of the service offered by this kind of establishment to be defined, as well as the main dimensions in which it develops. In the conclusions, factors which should influence the manager of an online supermarket to improve the quality of its service are given

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most adequate approach for benchmarking web accessibility is manual expert evaluation supplemented by automatic analysis tools. But manual evaluation has a high cost and is impractical to be applied on large websites. In reality, there is no choice but to rely on automated tools when reviewing large web sites for accessibility. The question is: to what extent the results from automatic evaluation of a web site and individual web pages can be used as an approximation for manual results? This paper presents the initial results of an investigation aimed at answering this question. He have performed both manual and automatic evaluations of the accessibility of web pages of two sites and we have compared the results. In our data set automatically retrieved results could most definitely be used as an approximation manual evaluation results.