61 resultados para Algebra.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defind by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincare-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct spectral sequences in the framework of Baues-Wirsching cohomology and homology for functors between small categories and analyze particular cases including Grothendieck fibrations. We also give applications to more classical cohomology and homology theories including Hochschild-Mitchell cohomology and those studied before by Watts, Roos, Quillen and others

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present formulas for computing the resultant of sparse polyno- mials as a quotient of two determinants, the denominator being a minor of the numerator. These formulas extend the original formulation given by Macaulay for homogeneous polynomials.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let I be an ideal in a local Cohen-Macaulay ring (A, m). Assume I to be generically a complete intersection of positive height. We compute the depth of the Rees algebra and the form ring of I when the analytic deviation of I equals one and its reduction number is also at most one. The formu- las we obtain coincide with the already known formulas for almost complete intersection ideals.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In the presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Near horizon (antideSitter) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2D interacting field theories with infinite conformal symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through an imaginary change of coordinates, the ordinary Poincar algebra is shown to be a subalgebra of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie generators are eliminated in a natural way. An application of these results to connect Galilean and relativistic field equations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a general action principle for mechanics written by means of the elements of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to write the action principle. By means of such an action principle we work out the equations of motion and a technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction picture. Classical or quantum mechanics come out as particular cases when we make realizations of the Lie algebra by derivations into the algebra of products of functions or operators, respectively. Later on we develop in particular the applications of the action principle to classical and quantum mechanics, seeing that in this last case it agrees with Schwinger's action principle. The main contribution of this paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same footing as in quantum mechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infinitesimal transformations that leave invariant a two-covariant symmetric tensor are studied. The interest of these symmetry transformations lays in the fact that this class of tensors includes the energy-momentum and Ricci tensors. We find that in most cases the class of infinitesimal generators of these transformations is a finite dimensional Lie algebra, but in some cases exhibiting a higher degree of degeneracy, this class is infinite dimensional and may fail to be a Lie algebra. As an application, we study the Ricci collineations of a type B warped spacetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a heuristic method for learning error correcting output codes matrices based on a hierarchical partition of the class space that maximizes a discriminative criterion. To achieve this goal, the optimal codeword separation is sacrificed in favor of a maximum class discrimination in the partitions. The creation of the hierarchical partition set is performed using a binary tree. As a result, a compact matrix with high discrimination power is obtained. Our method is validated using the UCI database and applied to a real problem, the classification of traffic sign images.