782 resultados para Danés i Torras, Josep, 1891-1955 -- Exposicions
Resumo:
In the present work, an analysis of the dark and optical capacitance transients obtained from Schottky Au:GaAs barriers implanted with boron has been carried out by means of the isothermal transient spectroscopy (ITS) and differential and optical ITS techniques. Unlike deep level transient spectroscopy, the use of these techniques allows one to easily distinguish contributions to the transients different from those of the usual deep trap emission kinetics. The results obtained show the artificial creation of the EL2, EL6, and EL5 defects by the boron implantation process. Moreover, the interaction mechanism between the EL2 and other defects, which gives rise to the U band, has been analyzed. The existence of a reorganization process of the defects involved has been observed, which prevents the interaction as the temperature increases. The activation energy of this process has been found to be dependent on the temperature of the annealing treatment after implantation, with values of 0.51 and 0.26 eV for the as‐implanted and 400 °C annealed samples, respectively. The analysis of the optical data has corroborated the existence of such interactions involving all the observed defects that affect their optical parameters
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).
Resumo:
The advances of the semiconductor industry enable microelectromechanical systems sensors, signal conditioning logic and network access to be integrated into a smart sensor node. In this framework, a mixed-mode interface circuit for monolithically integrated gas sensor arrays was developed with high-level design techniques. This interface system includes analog electronics for inspection of up to four sensor arrays and digital logic for smart control and data communication. Although different design methodologies were used in the conception of the complete circuit, high-level synthesis tools and methodologies were crucial in speeding up the whole design cycle, enhancing reusability for future applications and producing a flexible and robust component.
Resumo:
This work presents an alternative to generate continuous phase shift of sinusoidal signals based on the use of super harmonic injection locked oscillators (ILO). The proposed circuit is a second harmonic ILO with varactor diodes as tuning elements. In the locking state, by changing the varactor bias, a phase shift instead of a frequency shift is observed at the oscillator output. By combining two of these circuits, relative phases up to 90 could be achieved. Two prototypes of the circuit have been implemented and tested, a hybrid version working in the range of 200-300 MHz and a multichip module (MCM) version covering the 900¿1000 MHz band.
Resumo:
This paper demonstrates the feasibility of a new circuit for the conversion of binary phase-shift keying signals into amplitude-shift keying signals. In its simplest form, the converter circuit is composed by a power divider, a couple of second harmonic injection-locked oscillators, and a power combiner. The operation of the converter circuit relies on the frequency synchronization of both oscillators and the generation of an interference pattern by combining their outputs, which reproduces the original phase modulation. Two prototypes of the converter have been implemented. The first one is a hybrid version working in the 400-530-MHz frequency range. The second one has been implemented using multichip-module technology, and is intended to work in the 1.8-2.2-GHz frequency range.
Resumo:
Inductive-based devices integrated with Si technology for biodetection applications are characterized, using simple resonant differential filter configurations. This has allowed the corroboration of the viability of the proposed circuits, which are characterized by their very high simplicity, for microinductive signal conditioning in high-sensitivity sensor devices. The simulation of these simple circuits predicts sensitivities of the differential output voltage which can achieve values in the range of 0.1-1 V/nH, depending on the coil parameters. These very high-sensitivity values open the possibility for the experimental detection of extremely small inductance changes in the devices. For real microinductive devices, both series resistance and parasitic capacitive components contribute to the decrease of the differential circuit sensitivity. Nevertheless, measurements performed using micro-coils fabricated with relatively high series resistance and coupling parasitic effects have allowed detection of changes in the range of 2 nH. which are compatible with biodetection applications with estimated detection limits below the picomolarity range.
Resumo:
A configurational model for silicon oxide damaged after a high-dose ion implantation of a nonreactive species is presented. Based on statistics of silicon-centered tetrahedra, the model takes into account not only the closest environment of a given silicon atom, but also the second neighborhood, so it is specified whether the oxygen attached to one given silicon is bridging two tetrahedra or not. The frequencies and intensities of infrared vibrational bands have been calculated by averaging over the distributions and these results are in agreement with the ones obtained from infrared experimental spectra. Likewise, the chemical shifts obtained from x-ray photoelectron spectroscopy (XPS) analysis are similar to the reported values for the charge-transfer model of SiOx compounds.
Resumo:
An interfacing circuit for piezoresistive pressure sensors based on CMOS current conveyors is presented. The main advantages of the proposed interfacing circuit include the use of a single piezoresistor, the capability of offset compensation, and a versatile current-mode configuration, with current output and current or voltage input. Experimental tests confirm linear relation of output voltage versus piezoresistance variation.
Resumo:
Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigated
Resumo:
We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements.