607 resultados para Propietats òptiques no lineals
Resumo:
A Reply to the Comment by M. Hanson, C. Johansson, and S. Mørup.
Resumo:
We have used the unique spatial sensitivity of polarized neutron and soft x-ray beams in reflection geometry to measure the depth dependence of magnetization across the interface between a ferromagnet and an antiferromagnet. The net uncompensated magnetization near the interface responds to applied field, while uncompensated spins in the antiferromagnet bulk are pinned, thus providing a means to establish exchange bias.
Resumo:
Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet/ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. The magneto-optical Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.
Resumo:
The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained from specially designed ab initio cluster model calculations. Three important mechanisms have been identified. These are the delocalization of the magnetic orbitals into the anion p band, the variational contribution of the second-order interactions, and the many-body terms hidden in the two-body operator and the Heisenberg Hamiltonian.
Resumo:
We study theoretical and empirical aspects of the mean exit time (MET) of financial time series. The theoretical modeling is done within the framework of continuous time random walk. We empirically verify that the mean exit time follows a quadratic scaling law and it has associated a prefactor which is specific to the analyzed stock. We perform a series of statistical tests to determine which kind of correlation are responsible for this specificity. The main contribution is associated with the autocorrelation property of stock returns. We introduce and solve analytically both two-state and three-state Markov chain models. The analytical results obtained with the two-state Markov chain model allows us to obtain a data collapse of the 20 measured MET profiles in a single master curve.
Resumo:
We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two¿and not just one¿vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests different metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of this formalism and the metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the weak and the strong transitivity classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties.
Resumo:
The nonexponential relaxation occurring in complex dynamics manifested in a wide variety of systems is analyzed through a simple model of diffusion in phase space. It is found that the inability of the system to find its equilibrium state in any time scale becomes apparent in an effective temperature field, which leads to a hierarchy of relaxation times responsible for the slow relaxation phenomena.
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
In this paper we consider an exactly solvable model that displays glassy behavior at zero temperature due to entropic barriers. The new ingredient of the model is the existence of different energy scales or modes associated with different relaxational time scales. Low-temperature relaxation takes place by partial equilibration of successive lower-energy modes. An adiabatic scaling solution, defined in terms of a threshold energy scale e*, is proposed. For such a solution, modes with energy ee* are equilibrated at the bath temperature, modes with ee* remain out of equilibrium, and relaxation occurs in the neighborhood of the threshold e~e*. The model is presented as a toy example to investigate the conditions related to the existence of an effective temperature in glassy systems and its possible dependence on the energy sector is probed by the corresponding observable.
Resumo:
We have studied the relaxation dynamics of a dilute assembly of ferromagnetic particles in suspension. A formalism based on the Smoluchowski equation, describing the evolution of the probability density for the directions of the magnetic moment and of the axis of easy magnetization of the particles, has been developed. We compute the rotational viscosity from a Green-Kubo formula and give an expression for the relaxation time of the particles which comes from the dynamic equations of the correlation functions. Concerning the relaxation time for the particles, our results agree quite well with experiments performed on different samples of ferromagnetic particles for which the magnetic energy, associated with the interaction between the magnetic moments and the external field, or the energy of anisotropy plays a dominant role.
Resumo:
The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.
Resumo:
We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.