110 resultados para stochastic partial differential equations
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.
Resumo:
We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Itô vs Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itô. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for both interpretations is also presented.
Resumo:
The integrability problem consists in finding the class of functions a first integral of a given planar polynomial differential system must belong to. We recall the characterization of systems which admit an elementary or Liouvillian first integral. We define {\it Weierstrass integrability} and we determine which Weierstrass integrable systems are Liouvillian integrable. Inside this new class of integrable systems there are non--Liouvillian integrable systems.
Resumo:
We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Laboratory of Archaeometry del National Centre of Scientific Research “Demokritos” d’Atenes, Grècia, entre juny i setembre 2006. Aquest estudi s’emmarca dins d’un context més ampli d’estudi del canvi tecnològic que es documenta en la producció d’àmfores de tipologia romana durant els segles I aC i I dC en els territoris costaners de Catalunya. Una part d’aquest estudi contempla el càlcul de les propietats mecàniques d’aquestes àmfores i la seva avaluació en funció de la tipologia amforal, a partir de l’Anàlisi d’Elements Finits (AEF). L’AEF és una aproximació numèrica que té el seu origen en les ciències d’enginyeria i que ha estat emprada per estimar el comportament mecànic d’un model en termes, per exemple, de deformació i estrès. Així, un objecte, o millor dit el seu model, es dividit en sub-dominis anomenats elements finits, als quals se’ls atribueixen les propietats mecàniques del material en estudi. Aquests elements finits estan connectats formant una xarxa amb constriccions que pot ser definida. En el cas d’aplicar una força determinada a un model, el comportament de l’objecte pot ser estimat mitjançant el conjunt d’equacions lineals que defineixen el rendiment dels elements finits, proporcionant una bona aproximació per a la descripció de la deformació estructural. Així, aquesta simulació per ordinador suposa una important eina per entendre la funcionalitat de ceràmiques arqueològiques. Aquest procediment representa un model quantitatiu per predir el trencament de l’objecte ceràmic quan aquest és sotmès a diferents condicions de pressió. Aquest model ha estat aplicat a diferents tipologies amforals. Els resultats preliminars mostren diferències significatives entre la tipologia pre-romana i les tipologies romanes, així com entre els mateixos dissenys amforals romans, d’importants implicacions arqueològiques.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
En este trabajo introducimos diversas clases de barreras del dividendo en la teoría modelo clásica de la ruina. Estudiamos la influencia de la estrategia de la barrera en probabilidad de la ruina. Un método basado en las ecuaciones de la renovación [Grandell (1991)], alternativa a la discusión diferenciada [Gerber (1975)], utilizado para conseguir las ecuaciones diferenciales parciales para resolver probabilidades de la supervivencia. Finalmente calculamos y comparamos las probabilidades de la supervivencia usando la barrera linear y parabólica del dividendo, con la ayuda de la simulación
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
We study the effects of external noise in a one-dimensional model of front propagation. Noise is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic partial differential equation. Analytical and numerical results for the front shape and velocity are presented. The linear-marginal-stability theory is found to increase its range of validity in the presence of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic equation.
Resumo:
In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states.
Resumo:
The development of side-branching in solidifying dendrites in a regime of large values of the Peclet number is studied by means of a phase-field model. We have compared our numerical results with experiments of the preceding paper and we obtain good qualitative agreement. The growth rate of each side branch shows a power-law behavior from the early stages of its life. From their birth, branches which finally succeed in the competition process of side-branching development have a greater growth exponent than branches which are stopped. Coarsening of branches is entirely defined by their geometrical position relative to their dominant neighbors. The winner branches escape from the diffusive field of the main dendrite and become independent dendrites.
Resumo:
In this work we develop the canonical formalism for constrained systems with a finite number of degrees of freedom by making use of the PoincarCartan integral invariant method. A set of variables suitable for the reduction to the physical ones can be obtained by means of a canonical transformation. From the invariance of the PoincarCartan integral under canonical transformations we get the form of the equations of motion for the physical variables of the system.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.
Resumo:
The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.