155 resultados para sensor location problem
Resumo:
In this paper a p--median--like model is formulated to address theissue of locating new facilities when there is uncertainty. Severalpossible future scenarios with respect to demand and/or the travel times/distanceparameters are presented. The planner will want a strategy of positioning thatwill do as ``well as possible'' over the future scenarios. This paper presents a discrete location model formulation to address this P--Medianproblem under uncertainty. The model is applied to the location of firestations in Barcelona.
Resumo:
The past four decades have witnessed an explosive growth in the field of networkbased facilitylocation modeling. This is not at all surprising since location policy is one of the mostprofitable areas of applied systems analysis in regional science and ample theoretical andapplied challenges are offered. Location-allocation models seek the location of facilitiesand/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or severalobjectives generally related to the efficiency of the system or to the allocation of resources.This paper concerns the location of facilities or services in discrete space or networks, thatare related to the public sector, such as emergency services (ambulances, fire stations, andpolice units), school systems and postal facilities. The paper is structured as follows: first,we will focus on public facility location models that use some type of coverage criterion,with special emphasis in emergency services. The second section will examine models based onthe P-Median problem and some of the issues faced by planners when implementing thisformulation in real world locational decisions. Finally, the last section will examine newtrends in public sector facility location modeling.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum CaptureProblem. In the original MCP, market capture is obtained by lower traveling distances or lowertraveling time, in this new version not only the traveling time but also the waiting time willaffect the market share. This problem is hard to solve using standard optimization techniques.Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational, and research tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system. In this context the research developed includes the visual information as a meaningful source that allows detecting the obstacle position coordinates as well as planning the free obstacle trajectory that should be reached by the robot
Resumo:
This paper describes a mesurement system designed to register the displacement of the legs using a two-dimensional laser range sensor with a scanning plane parallel to the ground and extract gait parameters. In the proposed methodology, the position of the legs is estimated by fitting two circles with the laser points that define their contour and the gait parameters are extracted applying a step-line model to the estimated displacement of the legs to reduce uncertainty in the determination of the stand and swing phase of the gait. Results obtained in a range up to 8 m shows that the systematic error in the location of one static leg is lower than 10 mm with and standard deviation lower than 8 mm; this deviation increases to 11 mm in the case of a moving leg. The proposed measurement system has been applied to estimate the gait parameters of six volunteers in a preliminary walking experiment.
Resumo:
Wireless Sensor Networks (WSN) are formed by nodes with limited computational and power resources. WSNs are finding an increasing number of applications, both civilian and military, most of which require security for the sensed data being collected by the base station from remote sensor nodes. In addition, when many sensor nodes transmit to the base station, the implosion problem arises. Providing security measures and implosion-resistance in a resource-limited environment is a real challenge. This article reviews the aggregation strategies proposed in the literature to handle the bandwidth and security problems related to many-to-one transmission in WSNs. Recent contributions to secure lossless many-to-one communication developed by the authors in the context of several Spanish-funded projects are surveyed. Ongoing work on the secure lossy many-to-one communication is also sketched.
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3–body problem. Additionally, we also continue to this restricted problem the so called “comets orbits”.
Resumo:
We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism Φ of F sending W to U. This work analyzes an approach due to C. Edmunds and improved by C. Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two- generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.
Resumo:
The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear 3–body problem.
Resumo:
This paper assesses empirically the importance of size discrimination and disaggregate data for deciding where to locate a start-up concern. We compare three econometric specifications using Catalan data: a multinomial logit with 4 and 41 alternatives (provinces and comarques, respectively) in which firm size is the main covariate; a conditional logit with 4 and 41 alternatives including attributes of the sites as well as size-site interactions; and a Poisson model on the comarques and the full spatial choice set (942 municipalities) with site-specific variables. Our results suggest that if these two issues are ignored, conclusions may be misleading. We provide evidence that large and small firms behave differently and conclude that Catalan firms tend to choose between comarques rather than between municipalities. Moreover, labour-intensive firms seem more likely to be located in the city of Barcelona. Keywords: Catalonia, industrial location, multinomial response model. JEL: C250, E30, R00, R12
Resumo:
The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents with single-peaked preferences. A rule maps preference profiles into n shares of the amount to be allocated. A rule is bribe-proof if no group of agents can compensate another agent to misrepresent his preference and, after an appropriate redistribution of their shares, each obtain a strictly preferred share. We characterize all bribe-proof rules as the class of efficient, strategy-proof, and weak replacement monotonic rules. In addition, we identify the functional form of all bribe-proof and tops-only rules.
Resumo:
We consider the following allocation problem: A fixed number of public facilities must be located on a line. Society is composed of $N$ agents, who must be allocated to one and only one of these facilities. Agents have single peaked preferences over the possible location of the facilities they are assigned to, and do not care about the location of the rest of facilities. There is no congestion. In this context, we observe that if a public decision is a Condorcet winner, then it satisfies nice properties of internal and external stability. Though in many contexts and for some preference profiles there may be no Condorcet winners, we study the extent to which stability can be made compatible with the requirement of choosing Condorcet winners whenever they exist.
Resumo:
The division problem consists of allocating an amount M of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, the uniform rule is the unique strategy-proof, efficient, and anonymous rule. Ching and Serizawa (1998) extended this result by showing that the set of single-plateaued preferences is the largest domain, for all possible values of M, admitting a rule (the extended uniform rule) satisfying strategy-proofness, efficiency and symmetry. We identify, for each M and n, a maximal domain of preferences under which the extended uniform rule also satisfies the properties of strategy-proofness, efficiency, continuity, and "tops-onlyness". These domains (called weakly single-plateaued) are strictly larger than the set of single-plateaued preferences. However, their intersection, when M varies from zero to infinity, coincides with the set of single-plateaued preferences.
Resumo:
We analyze situations in which a group of agents (and possibly a designer) have to reach a decision that will affect all the agents. Examples of such scenarios are the location of a nuclear reactor or the siting of a major sport event. To address the problem of reaching a decision, we propose a one-stage multi-bidding mechanism where agents compete for the project by submitting bids. All Nash equilibria of this mechanism are efficient. Moreover, the payoffs attained in equilibrium by the agents satisfy intuitively appealing lower bounds..