52 resultados para sampling frequency
Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation.
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.
Resumo:
A frequency-dependent compact model for inductors in high ohmic substrates, which is based on an energy point-of-view, is developed. This approach enables the description of the most important coupling phenomena that take place inside the device. Magnetically induced losses are quite accurately calculated and coupling between electric and magnetic fields is given by means of a delay constant. The later coupling phenomenon provides a modified procedure for the computation of the fringing capacitance value, when the self-resonance frequency of the inductor is used as a fitting parameter. The model takes into account the width of every metal strip and the pitch between strips. This enables the description of optimized layout inductors. Data from experiments and electromagnetic simulators are presented to test the accuracy of the model.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
Generally, medicine books are concentrated almost exclusively in explaining methodology that analyzes fixed measures, measures done in a certain moment, nevertheless the evolution of the measurement and correct interpretation of the missed values are very important and sometimes can give the key information of the results obtained. Thus, the analysis of the temporary series and spectral analysis or analysis of the time series in the dominion of frequencies can be regarded as an appropriate tool for this kind of studies.In this work the frequency of the pulsating secretion of luteinizing hormone LH (thatregulates the fertile life of women) were analyzed in order to determine the existence of the significant frequencies obtained by analysis of Fourier. Detection of the frequencies, with which the pulsating secretion of the LH takes place, is a quite difficult question due topresence of the random errors in measures and samplings, i.e. that pulsating secretions of small amplitude are not detected and disregarded. In physiology it is accepted that cyclical patterns in the secretion of the LH exist and in the results of this research confirm this pattern and determine its frequency presented in the corresponded periodograms to each of studied cycle. The obtained results can be used as key pattern for future sampling frequencies in order to ¿catch¿ the significant picks of the luteinizing hormone and reflect on time forproductivity treatment of women.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
Two trends which presently exist in relation to the concept of Paleontology are analyzed, pointing out some of the aspects which negative influence. Various reflections are made based on examples of some of the principal points of paleontological method, such as the influence of a punctual sampling, the meaning of size-frequency distribution and subjectivity in the identification of fossils. Topics which have a marked repercussion in diverse aspects of Paleontology are discussed.
Resumo:
The decapod burrow Spongeliomorpha sudolica occurs associated with transgressive firmgrounds in the transition between Aragonian continental red beds and Langhian marine units in some of the inner sectors of the Vallès-Penedès Basin. This ichnospecies designates branching burrow systems with scratch marks in the walls produced by marine crustacean decapods. The occurrence of Spongeliomorpha represents an example of theGlossifungites ichnofacies. The several horizons where the traces are found are intercalated with continental red beds a few meters below the main transgressive surface, which is overlain by fossiliferous marine sandstones. The Spongeliomorpha-bioturbated layers record short, high frequency marine flooding surfaces that may be related either to actual sea-level changes or to variations in tectonic subsidence or sediment input. In any case, these flooding events punctuated the early phases of the Langhian transgression in the basin.
Resumo:
The frequency dynamics of gain-switched singlemode semiconductor lasers subject to optical injection is investigated. The requirements for low time jitter and reduced frequency chirp operation are studied as a function of the frequency mismatch between the master and slave lasers. Suppression of the power overshoot, typical during gain-switched operation, can be achieved for selected frequency detunings.
Resumo:
We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions that would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.
Resumo:
We investigate within mean-field theory the influence of a one-dimensional optical lattice and of trapped degenerate fermions on the critical rotational frequency for vortex line creation in a Bose-Einstein condensate. We consider laser intensities of the lattice such that quantum coherence across the condensate is ensured. We find a sizable decrease of the thermodynamic critical frequency for vortex nucleation with increasing applied laser strength and suggest suitable parameters for experimental observation. Since 87Rb-40K mixtures may undergo collapse, we analyze the related question of how the optical lattice affects the mechanical stability of the system.
Resumo:
We present a high‐resolution electron microscopy study of the microstructure of boron nitride thin films grown on silicon (100) by radio‐frequency plasma‐assisted chemical vapor deposition using B2H6 (1% in H2) and NH3 gases. Well‐adhered boron nitride films grown on the grounded electrode show a highly oriented hexagonal structure with the c‐axis parallel to the substrate surface throughout the film, without any interfacial amorphous layer. We ascribed this textured growth to an etching effect of atomic hydrogen present in the gas discharge. In contrast, films grown on the powered electrode, with compressive stress induced by ion bombardment, show a multilayered structure as observed by other authors, composed of an amorphous layer, a hexagonal layer with the c‐axis parallel to the substrate surface and another layer oriented at random
Resumo:
In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.
Resumo:
The substrate tuning technique was applied to a radio frequency magnetron sputtering system to obtain a variable substrate bias without an additional source. The dependence of the substrate bias on the value of the external impedance was studied for different values of chamber pressure, gas composition and rf input power. A qualitative explanation of the results is given, based on a simple model, and the role of the stray capacitance is clearly disclosed. Langmuir probe measurements show that this system allows independent control of the ion flux and the ion energy bombarding the growing film. For an argon flow rate of 2.8 sccm and a radio frequency power of 300 W (intermediate values of the range studied) the ion flux incident on the substrate was 1.3 X 1020-m-2-s-1. The maximum ion energy available in these conditions can be varied in the range 30-150 eV. As a practical application of the technique, BN thin films were deposited under different ion bombardment conditions. An ion energy threshold of about 80 eV was found, below which only the hexagonal phase was present in the films, while for higher energies both hexagonal and cubic phase were present. A cubic content of about 60% was found for an ion energy of 120 V.