48 resultados para neural computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time scale parametric spike train distances like the Victor and the van Rossum distancesare often applied to study the neural code based on neural stimuli discrimination.Different neural coding hypotheses, such as rate or coincidence coding,can be assessed by combining a time scale parametric spike train distance with aclassifier in order to obtain the optimal discrimination performance. The time scalefor which the responses to different stimuli are distinguished best is assumed to bethe discriminative precision of the neural code. The relevance of temporal codingis evaluated by comparing the optimal discrimination performance with the oneachieved when assuming a rate code.We here characterize the measures quantifying the discrimination performance,the discriminative precision, and the relevance of temporal coding. Furthermore,we evaluate the information these quantities provide about the neural code. Weshow that the discriminative precision is too unspecific to be interpreted in termsof the time scales relevant for encoding. Accordingly, the time scale parametricnature of the distances is mainly an advantage because it allows maximizing thediscrimination performance across a whole set of measures with different sensitivitiesdetermined by the time scale parameter, but not due to the possibility toexamine the temporal properties of the neural code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alignment between competences, teaching-learning methodologies and assessment is a key element of the European Higher Education Area. This paper presents the efforts carried out by six Telematics, Computer Science and Electronic Engineering Education teachers towards achieving this alignment in their subjects. In a joint work with pedagogues, a set of recommended actions were identified. A selection of these actions were applied and evaluated in the six subjects. The cross-analysis of the results indicate that the actions allow students to better understand the methodologies and assessment planned for the subjects, facilitate (self-) regulation and increase students’ involvement in the subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical planning has been notably successful in synthesizing finite plans to achieve states where propositional goals hold. In the last few years, classical planning has also been extended to incorporate temporally extended goals, expressed in temporal logics such as LTL, to impose restrictions on the state sequences generated by finite plans. In this work, we take the next step and consider the computation of infinite plans for achieving arbitrary LTL goals. We show that infinite plans can also be obtained efficiently by calling a classical planner once over a classical planning encoding that represents and extends the composition of the planningdomain and the B¨uchi automaton representingthe goal. This compilation scheme has been implemented and a number of experiments are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical computing when input/output is driven by a Graphical User Interface is considered. A proposal is made for automatic control ofcomputational flow to ensure that only strictly required computationsare actually carried on. The computational flow is modeled by a directed graph for implementation in any object-oriented programming language with symbolic manipulation capabilities. A complete implementation example is presented to compute and display frequency based piecewise linear density estimators such as histograms or frequency polygons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article starts a computational study of congruences of modular forms and modular Galoisrepresentations modulo prime powers. Algorithms are described that compute the maximum integermodulo which two monic coprime integral polynomials have a root in common in a sensethat is defined. These techniques are applied to the study of congruences of modular forms andmodular Galois representations modulo prime powers. Finally, some computational results withimplications on the (non-)liftability of modular forms modulo prime powers and possible generalisationsof level raising are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to compare the performance of twopredictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. The neural network classifier performs better than the one based on logistic regression. This advantage is well detected by three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent method used to optimize biased neural networks with low levels of activity is applied to a hierarchical model. As a consequence, the performance of the system is strongly enhanced. The steps to achieve optimization are analyzed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural excitable medium. For this purpose, we have considered two types of modulations, namely, variations of the resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of whether the system is monostable or bistable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.