34 resultados para excitation energy level


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The methodology of Multi-Scale Integrated The methodology of Multi-Scale Integrated Analysis of Societal Metabolism (MSIASM) is applied to analyze the Chinese economy. This paper presents four tasks: (i) identifying a set of benchmarks that makes it possible to compare various characteristics of the Chinese economy with those of other country groups and the world (level) average; (ii) explaining the differences over the selected set of benchmarks, by looking at the characteristics of the various sub-sectors of the Chinese economy; (iii) understanding existing trends and future feasible future development paths for China by studying the existence of reciprocal constraints between the whole economy and its sub-sectors; and (iv) examining plausible future scenarios of development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an initial challenge to tackle the every so "tricky" points encountered when dealing with energy accounting, and thereafter illustrates how such a system of accounting can be used when assessing for the metabolic changes in societies. The paper is divided in four main sections. The first three, present a general discussion on the main issues encountered when conducting energy analyses. The last section, subsequently, combines this heuristic approach to the actual formalization of it, in quantitative terms, for the analysis of possible energy scenarios. Section one covers the broader issue of how to account for the relevant categories used when accounting for Joules of energy; emphasizing on the clear distinction between Primary Energy Sources (PES) (which are the physical exploited entities that are used to derive useable energy forms (energy carriers)) and Energy Carriers (EC) (the actual useful energy that is transmitted for the appropriate end uses within a society). Section two sheds light on the concept of Energy Return on Investment (EROI). Here, it is emphasized that, there must already be a certain amount of energy carriers available to be able to extract/exploit Primary Energy Sources to thereafter generate a net supply of energy carriers. It is pointed out that this current trend of intense energy supply has only been possible to the great use and dependence on fossil energy. Section three follows up on the discussion of EROI, indicating that a single numeric indicator such as an output/input ratio is not sufficient in assessing for the performance of energetic systems. Rather an integrated approach that incorporates (i) how big the net supply of Joules of EC can be, given an amount of extracted PES (the external constraints); (ii) how much EC needs to be invested to extract an amount of PES; and (iii) the power level that it takes for both processes to succeed, is underlined. Section four, ultimately, puts the theoretical concepts at play, assessing for how the metabolic performances of societies can be accounted for within this analytical framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study I try to explain the systemic problem of the low economic competitiveness of nuclear energy for the production of electricity by carrying out a biophysical analysis of its production process. Given the fact that neither econometric approaches nor onedimensional methods of energy analyses are effective, I introduce the concept of biophysical explanation as a quantitative analysis capable of handling the inherent ambiguity associated with the concept of energy. In particular, the quantities of energy, considered as relevant for the assessment, can only be measured and aggregated after having agreed on a pre-analytical definition of a grammar characterizing a given set of finite transformations. Using this grammar it becomes possible to provide a biophysical explanation for the low economic competitiveness of nuclear energy in the production of electricity. When comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. Since the cost of production of fossil energy provides the base line of economic competitiveness of electricity, the (lack of) economic competitiveness of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. In particular, the analysis focuses on fossil-fuel requirements and labor requirements for those phases that both nuclear plants and fossil energy plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. By adopting this approach, it becomes possible to explain the systemic low economic competitiveness of nuclear energy in the production of electricity, because of: (i) its dependence on oil, limiting its possible role as a carbon-free alternative; (ii) the choices made in relation to its fuel cycle, especially whether it includes reprocessing operations or not; (iii) the unavoidable uncertainty in the definition of the characteristics of its process; (iv) its large inertia (lack of flexibility) due to issues of time scale; and (v) its low power level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In earlier work, the present authors have shown that hardness profiles are less dependent on the level of calculation than energy profiles for potential energy surfaces (PESs) having pathological behaviors. At variance with energy profiles, hardness profiles always show the correct number of stationary points. This characteristic has been used to indicate the existence of spurious stationary points on the PESs. In the present work, we apply this methodology to the hydrogen fluoride dimer, a classical difficult case for the density functional theory methods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously reported results on deep level optical spectroscopy, optical absorption, deep level transient spectroscopy, photoluminescence excitation, and time resolved photoluminescence are reviewed and discussed in order to know which are the mechanisms involved in electron capture and emission of the Ti acceptor level in GaP. First, the analysis indicates that the 3T1(F) crystal¿field excited state is not in resonance with the conduction band states. Second, it is shown that both the 3T2 and 3T1(F) excited states do not play any significant role in the process of electron emission and capture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an extensive study of the structural and optical emission properties in aluminum silicates and soda-lime silicates codoped with Si nanoclusters (Si-nc) and Er. Si excess of 5 and 15¿at.¿% and Er concentrations ranging from 2×1019 up to 6×1020¿cm¿3 were introduced by ion implantation. Thermal treatments at different temperatures were carried out before and after Er implantation. Structural characterization of the resulting structures was performed to obtain the layer composition and the size distribution of Si clusters. A comprehensive study has been carried out of the light emission as a function of the matrix characteristics, Si and Er contents, excitation wavelength, and power. Er emission at 1540¿nm has been detected in all coimplanted glasses, with similar intensities. We estimated lifetimes ranging from 2.5¿to¿12¿ms (depending on the Er dose and Si excess) and an effective excitation cross section of about 1×10¿17¿cm2 at low fluxes that decreases at high pump power. By quantifying the amount of Er ions excited through Si-nc we find a fraction of 10% of the total Er concentration. Upconversion coefficients of about 3×10¿18¿cm¿3¿s¿1 have been found for soda-lime glasses and one order of magnitude lower in aluminum silicates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quantum efficiency erbium doped silicon nanocluster (Si-NC:Er) light emitting diodes (LEDs) were grown by low-pressure chemical vapor deposition (LPCVD) in a complementary metal-oxide-semiconductor (CMOS) line. Erbium (Er) excitation mechanisms under direct current (DC) and bipolar pulsed electrical injection were studied in a broad range of excitation voltages and frequencies. Under DC excitation, Fowler-Nordheim tunneling of electrons is mediated by Er-related trap states and electroluminescence originates from impact excitation of Er ions. When the bipolar pulsed electrical injection is used, the electron transport and Er excitation mechanism change. Sequential injection of electrons and holes into silicon nanoclusters takes place and nonradiative energy transfer to Er ions is observed. This mechanism occurs in a range of lower driving voltages than those observed in DC and injection frequencies higher than the Er emission rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed analysis of the photocapacitance signal at the near‐band and extrinsic energetic ranges in Schottky barriers obtained on horizontal Bridgman GaAs wafers, which were implanted with boron at different doses and annealed at several temperatures, has been carried out by using the optical isothermal transient spectroscopy, OITS. The optical cross sections have been determined as well as the quenching efficiency of the EL2 level which has been found to be independent of the annealing temperature. Moreover, the quenching relaxation presents two significant features: (i) a strong increase of the quenching efficiency from 1.35 eV on and (ii) a diminution of the quenching transient amplitude in relation with that shown by the fundamental EL2 level. In order to explain this behavior, different cases are discussed assuming the presence of several energy levels, the existence of an optical recuperation, or the association of the EL2 trap with two levels located, respectively, at Ev+0.45 eV and Ec−0.75 eV. The theoretical simulation, taking into account these two last cases, is in agreement with the experimental photocapacitance data at low temperature, as well as at room temperature where the EL2 filling phototransient shows an anomalous behavior. Moreover, unlike the previous data reported for the EL2 electron optical cross section, the values found using our experimental technique are in agreement with the behavior deduced from the theoretical calculation. The utilization of the OITS method has also allowed the determination of another level, whose faster optical contribution is often added to that of the EL2 level when the DLOS or standard photocapacitance is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments with amyloid-beta (Aß) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Aß oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aß10-35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Despite the fundamental role of ecosystem goods and services in sustaining human activities, there is no harmonized and internationally agreed method for including them in life cycle assessment (LCA). The main goal of this study was to develop a globally applicable and spatially resolved method for assessing land-use impacts on the erosion regulation ecosystem service.Methods: Soil erosion depends much on location. Thus, unlike conventional LCA, the endpoint method was regionalized at the grid-cell level (5 arc-minutes, approximately 10×10 km2) to reflect the spatial conditions of the site. Spatially explicit characterization factors were not further aggregated at broader spatial scales. Results and discussion: Life cycle inventory data of topsoil and topsoil organic carbon (SOC) losses were interpreted at the endpoint level in terms of the ultimate damage to soil resources and ecosystem quality. Human health damages were excluded from the assessment. The method was tested on a case study of five three-year agricultural rotations, two of them with energy crops, grown in several locations in Spain. A large variation in soil and SOC losses was recorded in the inventory step, depending on climatic and edaphic conditions. The importance of using a spatially explicit model and characterization factors is shown in the case study.Conclusions and outlook: The regionalized assessment takes into account the differences in soil erosion-related environmental impacts caused by the great variability of soils. Taking this regionalized framework as the starting point, further research should focus on testing the applicability of the method trough the complete life cycle of a product and on determining an appropriate spatial scale at which to aggregate characterization factors, in order to deal with data gaps on location of processes, especially in the background system. Additional research should also focus on improving reliability of the method by quantifying and, insofar as it is possible, reducing uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower-frequency modes relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy nonlinear modes into lower-energy ones. The lowest-energy modes are absorbed by the cold reservoir, but a small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is extremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breathers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized arrays and observing the relaxation behavior.