28 resultados para direct search optimization algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors focus on one of the methods for connection acceptance control (CAC) in an ATM network: the convolution approach. With the aim of reducing the cost in terms of calculation and storage requirements, they propose the use of the multinomial distribution function. This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements. This in turn makes possible a simple deconvolution process. Moreover, under certain conditions additional improvements may be achieved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Floor cleaning is a typical robot application. There are several mobile robots aviable in the market for domestic applications most of them with random path-planning algorithms. In this paper we study the cleaning coverage performances of a random path-planning mobile robot and propose an optimized control algorithm, some methods to estimate the are of the room, the evolution of the cleaning and the time needed for complete coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present building blocks for algorithms for the efficient reduction of square factor, i.e. direct repetitions in strings. So the basic problem is this: given a string, compute all strings that can be obtained by reducing factors of the form zz to z. Two types of algorithms are treated: an offline algorithm is one that can compute a data structure on the given string in advance before the actual search for the square begins; in contrast, online algorithms receive all input only at the time when a request is made. For offline algorithms we treat the following problem: Let u and w be two strings such that w is obtained from u by reducing a square factor zz to only z. If we further are given the suffix table of u, how can we derive the suffix table for w without computing it from scratch? As the suffix table plays a key role in online algorithms for the detection of squares in a string, this derivation can make the iterated reduction of squares more efficient. On the other hand, we also show how a suffix array, used for the offline detection of squares, can be adapted to the new string resulting from the deletion of a square. Because the deletion is a very local change, this adaption is more eficient than the computation of the new suffix array from scratch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of state-of-the-art results without the use of too much problem-specific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the artalgorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simple Optimised Search Heuristic for the Job Shop Scheduling problem that combines a GRASP heuristic with a branch-and-bound algorithm. The proposed method is compared with similar approaches and leads to better results in terms of solution quality and computing times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of searchability in decentralized complex networks is of great importance in computer science, economy, and sociology. We present a formalism that is able to cope simultaneously with the problem of search and the congestion effects that arise when parallel searches are performed, and we obtain expressions for the average search cost both in the presence and the absence of congestion. This formalism is used to obtain optimal network structures for a system using a local search algorithm. It is found that only two classes of networks can be optimal: starlike configurations, when the number of parallel searches is small, and homogeneous-isotropic configurations, when it is large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.