49 resultados para computational geometry
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued semialgebraic set-valued map is almost everywhere continuous (in both topological and measure-theoretic sense). The result –depending on stratification techniques– holds true in a more general setting of o-minimal (or tame) set-valued maps. Some applications are briefly discussed at the end.
Resumo:
Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.
Resumo:
This PhD project aims to study paraphrasing, initially understood as the different ways in which the same content is expressed linguistically. We will go into that concept in depth trying to define and delimit its scope more accurately. In that sense, we also aim to discover which kind of structures and phenomena it covers. Although there exist some paraphrasing typologies, the great majority of them only apply to English, and focus on lexical and syntactic transformations. Our intention is to go further into this subject and propose a paraphrasing typology for Spanish and Catalan combining lexical, syntactic, semantic and pragmatic knowledge. We apply a bottom-up methodology trying to collect evidence of this phenomenon from the data. For this purpose, we are initially using the Spanish Wikipedia as our corpus. The internal structure of this encyclopedia makes it a good resource for extracting paraphrasing examples for our investigation. This empirical approach will be complemented with the use of linguistic knowledge, and by comparing and contrasting our results to previously proposed paraphrasing typologies in order to enlarge the possible paraphrasing forms found in our corpus. The fact that the same content can be expressed in many different ways presents a major challenge for Natural Language Processing (NLP) applications. Thus, research on paraphrasing has recently been attracting increasing attention in the fields of NLP and Computational Linguistics. The results obtained in this investigation would be of great interest in many of these applications.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the mathematical model. Our main conclusion is that mathematical and computational models are good complements for research in social sciences. Indeed, while computational models are extremely useful to extend the scope of the analysis to complex scenarios hard to analyze mathematically, formal models can be useful to verify and to explain the outcomes of computational models.
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) ofdifferent vertebrates using the Compositional Data Analysis (CDA) methodologicalapproach it’s presented.355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda,Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) wereanalyzed with CDA.A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinsondistance has been used as a measure of disparity in limb elements proportions to infersome aspects of functional morphology
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
Demosaicking is a particular case of interpolation problems where, from a scalar image in which each pixel has either the red, the green or the blue component, we want to interpolate the full-color image. State-of-the-art demosaicking algorithms perform interpolation along edges, but these edges are estimated locally. We propose a level-set-based geometric method to estimate image edges, inspired by the image in-painting literature. This method has a time complexity of O(S) , where S is the number of pixels in the image, and compares favorably with the state-of-the-art algorithms both visually and in most relevant image quality measures.
Resumo:
Objective: The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted.Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with thecontinuing development and validation of these tools, it is imperative to collect the opinion of the clinicians. Methods: A workshopon CFD was conducted during the European Society of Minimally Invasive Neurological Therapy (ESMINT) Teaching Course,Lisbon, Portugal. 36 delegates, mostly clinicians, performed supervised CFD analysis for an IA, using the @neuFuse softwaredeveloped within the European project @neurIST. Feedback on the workshop was collected and analyzed. The performancewas assessed on a scale of 1 to 4 and, compared with experts’ performance. Results: Current dilemmas in the management ofunruptured IAs remained the most important motivating factor to attend the workshop and majority of participants showedinterest in participating in a multicentric trial. The participants achieved an average score of 2.52 (range 0–4) which was 63% (range 0–100%) of an expert user. Conclusions: Although participants showed a manifest interest in CFD, there was a clear lack ofawareness concerning the role of hemodynamics in the etiopathogenesis of IAs and the use of CFD in this context. More effortstherefore are required to enhance understanding of the clinicians in the subject.
Resumo:
The identification and integration of reusable and customizable CSCL (Computer Supported Collaborative Learning) may benefit from the capture of best practices in collaborative learning structuring. The authors have proposed CLFPs (Collaborative Learning Flow Patterns) as a way of collecting these best practices. To facilitate the process of CLFPs by software systems, the paper proposes to specify these patterns using IMS Learning Design (IMS-LD). Thus, teachers without technical knowledge can particularize and integrate CSCL tools. Nevertheless, the support of IMS-LD for describing collaborative learning activities has some deficiencies: the collaborative tools that can be defined in these activities are limited. Thus, this paper proposes and discusses an extension to IMS-LD that enables to specify several characteristics of the use of tools that mediate collaboration. In order to obtain a Unit of Learning based on a CLFP, a three stage process is also proposed. A CLFP-based Unit of Learning example is used to illustrate the process and the need of the proposed extension.
Resumo:
Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations
Resumo:
Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.