59 resultados para body weights
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well-established prediction of finite-temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such a phase transition for homogeneous nuclear matter within the self-consistent Green's function approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.
On the existence of bi-pyramidal central configurations of the n + 2-body problem with an n-gon base
Resumo:
Abstract. In this paper we prove the existence of central con gurations of the n + 2{body problem where n equal masses are located at the vertices of a regular n{gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n{gon passing through its center. Here this kind of central con gurations is called bi{pyramidal central con gurations. In particular, we prove that if the masses mn+1 and mn+2 and their positions satisfy convenient relations, then the con guration is central. We give explicitly those relations.
Resumo:
Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.
Resumo:
In freshwater planarians, the protein TCEN49 has been linked to the regional specification of the central body region, which includes the pharynx.
Resumo:
Digital art interfaces presents cognitiveparadigms that deals with the recognition of the symbols and representations through interaction.What is presented in this paper is anapproximation of the bodily experience in that particular scenario and a new proposal which has the aim to contribute more ideas and criteria in the analysis of the learning process of aparticipant discovering an interactive space or interface. For that I propose a first new approach where metaphorically I tried to extrapolate the stages of the psychology of development stated byJean Piaget in the interface design domain.