27 resultados para Usage and custom
Resumo:
Background: The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.Results: We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php.Conclusions: BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
Resumo:
The main information sources to study a particular piece of music are symbolic scores and audio recordings. These are complementary representations of the piece and it isvery useful to have a proper linking between the two of the musically meaningful events. For the case of makam music of Turkey, linking the available scores with the correspondingaudio recordings requires taking the specificities of this music into account, such as the particular tunings, the extensive usage of non-notated expressive elements, and the way in which the performer repeats fragmentsof the score. Moreover, for most of the pieces of the classical repertoire, there is no score written by the original composer. In this paper, we propose a methodology to pair sections of a score to the corresponding fragments of audio recording performances. The pitch information obtained from both sources is used as the common representationto be paired. From an audio recording, fundamental frequency estimation and tuning analysis is done to compute a pitch contour. From the corresponding score, symbolic note names and durations are converted to a syntheticpitch contour. Then, a linking operation is performed between these pitch contours in order to find the best correspondences.The method is tested on a dataset of 11 compositions spanning 44 audio recordings, which are mostly monophonic. An F3-score of 82% and 89% are obtained with automatic and semi-automatic karar detection respectively,showing that the methodology may give us a needed tool for further computational tasks such as form analysis, audio-score alignment and makam recognition.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
Seismic methods used in the study of snow avalanches may be employed to detect and characterize landslides and other mass movements, using standard spectrogram/sonogram analysis. For snow avalanches, the spectrogram for a station that is approached by a sliding mass exhibits a triangular time/frequency signature due to an increase over time in the higher-frequency constituents. Recognition of this characteristic footprint in a spectrogram suggests a useful metric for identifying other mass-movement events such as landslides. The 1 June 2005 slide at Laguna Beach, California is examined using data obtained from the Caltech/USGS Regional Seismic Network. This event exhibits the same general spectrogram features observed in studies of Alpine snow avalanches. We propose that these features are due to the systematic relative increase in high-frequency energy transmitted to a seismometer in the path of a mass slide owing to a reduction of distance from the source signal. This phenomenon is related to the path of the waves whose high frequencies are less attenuated as they traverse shorter source-receiver paths. Entrainment of material in the course of the slide may also contribute to the triangular time/frequency signature as a consequence of the increase in the energy involved in the process; in this case the contribution would be a source effect. By applying this commonly observed characteristic to routine monitoring algorithms, along with custom adjustments for local site effects, we seek to contribute to the improvement in automatic detection and monitoring methods of landslides and other mass movements.
Resumo:
The Water Framework Directive (WFD) defines common objectives for water resources throughout the European Union (EU). Given this general approach to water preservation and water policy, the objective of this paper is to analyse whether common patterns of water consumption exist within Europe. In particular, our study uses two methods to reveal the reasons behind sectoral water use in all EU countries. The first method is based on an accounting indicator that calculates the water intensity of an economy as the sum of sectoral water intensities. The second method is a subsystem input‐output model that divides total water use into different income channels within the production system. The application uses data for the years 2005 and 2009 on water consumption in the production system of the 27 countries of the EU. From our analysis it emerges that EU countries are characterized by very different patterns of water consumption. In particular water consumption by the agriculture sector is extremely high in Central/Eastern Europe, relative to the rest of Europe. In most countries, the water used by the fuel, power and water sector is consumed to satisfy domestic final demand. However, our analysis shows that for some countries exports from this sector are an important driver of water consumption. Focusing on the agricultural sector, the decomposition analysis suggests that water usage in Mediterranean countries is mainly driven by final demand for, and exports of, agricultural products. In Central/Eastern Europe domestic final demand is the main driver of water consumption, but in this region the proportion of water use driven by demand for exports is increasing over time. Given these heterogeneous water consumption patterns, our analysis suggests that Mediterranean and Central/Eastern European countries should adopt specific water policies in order to achieve efficient levels of water consumption in the European Union. JEL codes: N5; C67 Keywords: Water use, Subsystem input–output model; Water intensity, European Union.
Resumo:
In this paper we describe a proposal for defining the relationships between resources, users and services in a digital repository. Nowadays, virtual learning environments are widely used but digital repositories are not fully integrated yet into the learning process. Our final goal is to provide final users with recommendation systems and reputation schemes that help them to build a true learning community around the institutional repository, taking into account their educational context (i.e. the courses they are enrolled into) and their activity (i.e. system usage by their classmates and teachers). In order to do so, we extend the basic resource concept in a traditional digital repository by adding all the educational context and other elements from end-users' profiles, thus bridging users, resources and services, and shifting from a library-centered paradigm to a learning-centered one.
Resumo:
Electrically driven Er3+ doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er3+ doped active layers were fabricated in the slot region: a pure SiO2 and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er3+ ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 μW. All these performances suggest the usage of these devices as electro-optical modulators.
Resumo:
Peer-reviewed
Resumo:
Catalan has drawn considerable attention given its impressive institutional support and increased usage since the restoration of the Generalitat of Catalonia. We report a study on 112 Catalan-speaking students who were administered the"subjective vitality questionnaire". Results show (and these are compared with reports 20 years ago) that it continues to gain momentum and status, even with the International stature of Spanish. The theoretical and pragmatic significance of these findings are discussed in terms of vitality"s role in shaping Language choices (Catalan vs. Castilian) in everyday communication as well as the societal level in forging Language policies for communicating in Catalan in business, political, educational, and media arenas
Resumo:
Ethernet is becoming the dominant aggregation technology for carrier transport networks; however, as it is a LAN technology, native bridged ethernet does not fulfill all the carrier requirements. One of the schemes proposed by the research community to make ethernet fulfill carrier requirements is ethernet VLAN-label switching (ELS). ELS allows the creation of label switched data paths using a 12-bit label encoded in the VLAN TAG control information field. Previous label switching technologies such as MPLS use more bits for encoding the label. Hence, they do not suffer from label sparsity issues as ELS might. This paper studies the sparsity issues resulting from the reduced ELS VLAN-label space and proposes the use of the label merging technique to improve label space usage. Experimental results show that label merging considerably improves label space usage
Resumo:
The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.