70 resultados para Underwater construction
Resumo:
Trois mois de conflit armé en Côte d’Ivoire pendant l’année 2002 finirent par provoquer la division du pays en deux régions, séparées par une ligne d’interposition contrôlée par les Forces Licorne françaises. Le processus de paix se prolongea dans le temps, caractérisé par un manque de confiance mutuelle et une immobilité politique. Ces faits ont débouché sur une situation d’impasse et la permanence de Laurent Gbagbo à la présidence du pays. De plus, les différents accords politiques n’aidèrent pas le processus de construction de la paix, puisqu’ils n’abordaient pas certains problèmes principaux du pays, comme par exemple la propriété des terres et les sujets concernant l’identité. Ce document de travail aspire, tout d’abord, à analyser les faits principaux et les causes qui provoquèrent le conflit à partir du coup d’état de 2002. En deuxième lieu, le document analyse le processus de paix et signale les éléments clé de l’Accord de Paix d’Ouagadougou (2007): la création d’une nouvelle et unique structure des forces armées, ainsi que l’identification de la population et la réalisation d’un processus électoral. L’objectif principal est de fournir un outil de travail à l’Institut Catalan International pour la Paix (ICIP) afin d’envoyer une mission d’observation électorale dans ce pays africain.
Resumo:
El procés de fusió de dues o més imatges de la mateixa escena en una d'única i més gran és conegut com a Image Mosaicing. Un cop finalitzat el procés de construcció d'un mosaic, els límits entre les imatges són habitualment visibles, degut a imprecisions en els registres fotomètric i geomètric. L'Image Blending és l'etapa del procediment de mosaicing a la que aquests artefactes són minimitzats o suprimits. Existeixen diverses metodologies a la literatura que tracten aquests problemes, però la majoria es troben orientades a la creació de panorames terrestres, imatges artístiques d'alta resolució o altres aplicacions a les quals el posicionament de la càmera o l'adquisició de les imatges no són etapes rellevants. El treball amb imatges subaquàtiques presenta desafiaments importants, degut a la presència d'scattering (reflexions de partícules en suspensió) i atenuació de la llum i a condicions físiques extremes a milers de metres de profunditat, amb control limitat dels sistemes d'adquisició i la utilització de tecnologia d'alt cost. Imatges amb il·luminació artificial similar, sense llum global com la oferta pel sol, han de ser unides sense mostrar una unió perceptible. Les imatges adquirides a gran profunditat presenten una qualitat altament depenent de la profunditat, i la seva degradació amb aquest factor és molt rellevant. El principal objectiu del treball és presentar dels principals problemes de la imatge subaquàtica, seleccionar les estratègies més adequades i tractar tota la seqüència adquisició-procesament-visualització del procés. Els resultats obtinguts demostren que la solució desenvolupada, basada en una Estratègia de Selecció de Límit Òptim, Fusió en el Domini del Gradient a les regions comunes i Emfatització Adaptativa d'Imatges amb baix nivell de detall permet obtenir uns resultats amb una alta qualitat. També s'ha proposat una estratègia, amb possibilitat d'implementació paral·lela, que permet processar mosaics de kilòmetres d'extensió amb resolució de centímetres per píxel.
Resumo:
This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
Detecting changes between images of the same scene taken at different times is of great interest for monitoring and understanding the environment. It is widely used for on-land application but suffers from different constraints. Unfortunately, Change detection algorithms require highly accurate geometric and photometric registration. This requirement has precluded their use in underwater imagery in the past. In this paper, the change detection techniques available nowadays for on-land application were analyzed and a method to automatically detect the changes in sequences of underwater images is proposed. Target application scenarios are habitat restoration sites, or area monitoring after sudden impacts from hurricanes or ship groundings. The method is based on the creation of a 3D terrain model from one image sequence over an area of interest. This model allows for synthesizing textured views that correspond to the same viewpoints of a second image sequence. The generated views are photometrically matched and corrected against the corresponding frames from the second sequence. Standard change detection techniques are then applied to find areas of difference. Additionally, the paper shows that it is possible to detect false positives, resulting from non-rigid objects, by applying the same change detection method to the first sequence exclusively. The developed method was able to correctly find the changes between two challenging sequences of images from a coral reef taken one year apart and acquired with two different cameras
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
A major obstacle to processing images of the ocean floor comes from the absorption and scattering effects of the light in the aquatic environment. Due to the absorption of the natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion, and, as the vehicle moves, induce shadows in the scene. For this reason, the first step towards application of standard computer vision techniques to underwater imaging requires dealing first with these lighting problems. This paper analyses and compares existing methodologies to deal with low-contrast, nonuniform illumination in underwater image sequences. The reviewed techniques include: (i) study of the illumination-reflectance model, (ii) local histogram equalization, (iii) homomorphic filtering, and, (iv) subtraction of the illumination field. Several experiments on real data have been conducted to compare the different approaches
Resumo:
This paper presents an approach to ameliorate the reliability of the correspondence points relating two consecutive images of a sequence. The images are especially difficult to handle, since they have been acquired by a camera looking at the sea floor while carried by an underwater robot. Underwater images are usually difficult to process due to light absorption, changing image radiance and lack of well-defined features. A new approach based on gray-level region matching and selective texture analysis significantly improves the matching reliability
Resumo:
It is well known that image processing requires a huge amount of computation, mainly at low level processing where the algorithms are dealing with a great number of data-pixel. One of the solutions to estimate motions involves detection of the correspondences between two images. For normalised correlation criteria, previous experiments shown that the result is not altered in presence of nonuniform illumination. Usually, hardware for motion estimation has been limited to simple correlation criteria. The main goal of this paper is to propose a VLSI architecture for motion estimation using a matching criteria more complex than Sum of Absolute Differences (SAD) criteria. Today hardware devices provide many facilities for the integration of more and more complex designs as well as the possibility to easily communicate with general purpose processors
Resumo:
This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
A pioneer team of students of the University of Girona decided to design and develop an autonomous underwater vehicle (AUV) called ICTINEU-AUV to face the Student Autonomous Underwater Challenge-Europe (SAUC-E). The prototype has evolved from the initial computer aided design (CAD) model to become an operative AUV in the short period of seven months. The open frame and modular design principles together with the compatibility with other robots previously developed at the lab have provided the main design philosophy. Hence, at the robot's core, two networked computers give access to a wide set of sensors and actuators. The Gentoo/Linux distribution was chosen as the onboard operating system. A software architecture based on a set of distributed objects with soft real time capabilities was developed and a hybrid control architecture including mission control, a behavioural layer and a robust map-based localization algorithm made ICTINEU-AUV the winning entry