26 resultados para Solubility parameters
Resumo:
The combined effect of pressure and mild temperature treatments on bovine sarcoplasmic proteins and quality parameters was assessed. M. longissimus dorsi samples were pressurised in a range of 200–600 MPa and 10–30 °C. High Pressure Processing (HPP) induced a reduction of protein solubility (p < 0.001) compared to non-treated controls (NT), more pronounced above 200 MPa. HPP at pressures higher than 200 MPa induced a strong modification (p < 0.001) of meat colour and a reduction of water holding capacity (WHC). SDS–PAGE analysis demonstrated that HPP significantly modified the composition of the sarcoplasmic protein fraction. The pressurisation temperature mainly affected protein solubility and colour; a smaller effect was observed on protein profiles. Significant correlations (p < 0.001) between sarcoplasmic protein solubility and both expressible moisture (r = −0.78) and colour parameters (r = −0.81 to −0.91) suggest that pressure induced denaturation of sarcoplasmic proteins could influence to some extent WHC and colour modifications of beef. Changes in protein band intensities were also significantly correlated with protein solubility, meat lightness and expressible moisture. These results describe the changes induced by HPP on sarcoplasmic proteins and confirm a relationship between modification of the sarcoplasmic protein fraction and alteration of meat quality characteristics
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
The effects of the addition to sausage mix of tocopherols (200 mg/kg), a conventional starter culture with or without Staphylococcus carnosus, celery concentrate (CP) (0.23% and 0.46%), and two doses of nitrate (70 and 140 mg/kg expressed as NaNO(3)) on residual nitrate and nitrite amounts, instrumental CIE Lab color, tocol content, oxidative stability, and overall acceptability were studied in fermented dry-cured sausages after ripening and after storage. Nitrate doses were provided by nitrate-rich CP or a chemical grade source. The lower dose complies with the EU requirements governing the maximum for ingoing amounts in organic meat products. Tocopherol addition protected against oxidation, whereas the nitrate dose, nitrate source, or starter culture had little influence on secondary oxidation values. The residual nitrate and nitrite amounts found in the sausages with the lower nitrate dose were within EU-permitted limits for organic meat products and residual nitrate can be further reduced by the presence of the S. carnosus culture. Color measurements were not affected by the CP dose. Product consumer acceptability was not affected negatively by any of the factors studied. As the two nitrate sources behaved similarly for the parameters studied, CP is a useful alternative to chemical ingredients for organic dry-cured sausage production.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
Addition of a 50 mM mixture of l-arginine and l-glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE.
Resumo:
This paper discusses the levels of degradation of some co- and byproducts of the food chain intended for feed uses. As the first part of a research project, 'Feeding Fats Safety', financed by the sixth Framework Programme-EC, a total of 123 samples were collected from 10 European countries, corresponding to fat co- and byproducts such as animal fats, fish oils, acid oils from refining, recycled cooking oils, and other. Several composition and degradation parameters (moisture, acid value, diacylglycerols and monoacylglycerols, peroxides, secondary oxidation products, polymers of triacylglycerols, fatty acid composition, tocopherols, and tocotrienols) were evaluated. These findings led to the conclusion that some fat by- and coproducts, such as fish oils, lecithins, and acid oils, show poor, nonstandardized quality and that production processes need to be greatly improved. Conclusions are also put forward about the applicability and utility of each analytical parameter for characterization and quality control.
Resumo:
Rapid manufacturing is an advanced manufacturing technology based on layer-by-layer manufacturing to produce a part. This paper presents experimental work carried out to investigate the effects of scan speed, layer thickness, and building direction on the following part features: dimensional error, surface roughness, and mechanical properties for DMLS with DS H20 powder and SLM with CL 20 powder (1.4404/AISI 316L). Findings were evaluated using ANOVA analysis. According to the experimental results, build direction has a significant effect on part quality, in terms of dimensional error and surface roughness. For the SLM process, the build direction has no influence on mechanical properties. Results of this research support industry estimating part quality and mechanical properties before the production of parts with additive manufacturing, using iron-based powders
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications