86 resultados para Secondary electron
Resumo:
Conventional wisdom views the problem of sovereign risk as one of insufficient penalties.Foreign creditors can only be repaid if the government enforces foreign debts. And this will onlyhappen if foreign creditors can effectively use the threat of imposing penalties to the country.Guided by this assessment of the problem, policy prescriptions to reduce sovereign risk havefocused on providing incentives for governments to enforce foreign debts. For instance, countriesmight want to favor increased trade ties and other forms of foreign dependence that make themvulnerable to foreign retaliation thereby increasing the costs of default penalties.
Resumo:
This work describes the characteristics of a representative set of seven different virtual laboratories (VLs) aimed for science teaching in secondary school. For this purpose, a 27-item evaluation model that facilitates the characterization of the VLs was prepared. The model takes into account the gaming features, the overall usability, and also the potential to induce scientific literacy. Five of the seven VLs were then tested with two larger and highly heterogenic groups of students, and in two different contexts – biotechnology and physics, respectively. It is described how the VLs were received by the students, taking into account both their motivation and their self-reported learning outcome. In some cases, students’ approach to work with the VLs was recorded digitally, and analyzed qualitatively. In general, the students enjoyed the VL activities, and claimed that they learned from them. Yet, more investigation is required to address the effectiveness of these tools for significant learning.
Resumo:
The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupledelectron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV toabout 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme.Electron and positron histories are generated on the basis of a mixed procedure, which combinesdetailed simulation of hard events with condensed simulation of soft interactions. A geometry packagecalled PENGEOM permits the generation of random electron-photon showers in material systemsconsisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. Thisreport is intended not only to serve as a manual of the PENELOPE code system, but also to provide theuser with the necessary information to understand the details of the Monte Carlo algorithm.
Resumo:
A list of 681 UBVRI secondary standard stars for CCD photometry is presented. Visual magnitude ranges from 9.7 to 19.4, and the B-V colour index varies from 1.15 to 1.97. The stars are grouped into 11 different fields, each of them is generally observable in a single CCD frame. The stars are located near Landolt UBVRI equatorial standards, accessible to telescopes in both hemispheres, and mainly within the 5 - 8 hours range of right ascension. Photometry, equatorial coordinates and finding charts are provided.
Resumo:
Context.It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that includes the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims.We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods.The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. The spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets. We also compute the spectrum of the gamma-rays produced by neutral pion-decay and processed by electromagnetic cascades under the stellar photon field. Results.We show that the secondary emission can dominate the spectral energy distribution at low energies (~1 MeV). At high energies, the production spectrum can be significantly distorted by the effect of electromagnetic cascades. These effects are phase-dependent, and some variability modulated by the orbital period is predicted.
Resumo:
Previously reported results on deep level optical spectroscopy, optical absorption, deep level transient spectroscopy, photoluminescence excitation, and time resolved photoluminescence are reviewed and discussed in order to know which are the mechanisms involved in electron capture and emission of the Ti acceptor level in GaP. First, the analysis indicates that the 3T1(F) crystal¿field excited state is not in resonance with the conduction band states. Second, it is shown that both the 3T2 and 3T1(F) excited states do not play any significant role in the process of electron emission and capture.
Resumo:
This article reports a detailed Raman scattering and microstructural characterization of S-rich CuIn(S,Se)2 absorbers produced by electrodeposition of nanocrystalline CuInSe2 precursors and subsequent reactive annealing under sulfurizing conditions. Surface and in-depth resolved Raman microprobe measurements have been correlated with the analysis of the layers by optical and scanning electron microscopy, x-ray diffraction, and in-depth Auger electron spectroscopy. This has allowed corroboration of the high crystalline quality of the sulfurized layers. The sulfurizing conditions used also lead to the formation of a relatively thick MoS2 intermediate layer between the absorber and the Mo back contact. The analysis of the absorbers has also allowed identification of the presence of In-rich secondary phases, which are likely related to the coexistence in the electrodeposited precursors of ordered vacancy compound domains with the main chalcopyrite phase, in spite of the Cu-rich conditions used in the growth. This points out the higher complexity of the electrodeposition and sulfurization processes in relation to those based in vacuum deposition techniques.
Resumo:
Optical absorption spectra and transmission electron microscopy (TEM) observations on InGaAs/InP layers under compressive strain are reported. From the band¿gap energy dispersion, the magnitude of the strain inhomogeneities. Is quantified and its microscopic origin is analyzed in view of the layer microstructure. TEM observations reveal a dislocation network at the layer interface the density of which correlates with ¿¿. It is concluded that local variations of dislocation density are responsible for the inhomogeneous strain field together with another mechanism that dominates when the dislocation density is very low.
Resumo:
Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.
The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires
Resumo:
The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.
Resumo:
R commands to calculate the secondary production estimates using the size-frequency method after Hynes and Coleman (1968), Benke (1979) and Huryn (1996).
Resumo:
Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are presented for the barrier for the reaction Na20++Na20+¿Na402+. The deviation from the simple Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the supermolecule (Na20+)2. An extension of conventional quantum-chemical studies of homonuclear diatomic molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows the Na results to be utilized to make semiquantitative predictions of position and height of the maximum of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT calculations for the K clusters.
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation