30 resultados para Plastic Barriers
Resumo:
By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.
Resumo:
We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a system in the presence of potential barriers. The result is applied to a description of the evolution of systems whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.
Resumo:
The advent of new advances in mobile computing has changed the manner we do our daily work, even enabling us to perform collaborative activities. However, current groupware approaches do not offer an integrating and efficient solution that jointly tackles the flexibility and heterogeneity inherent to mobility as well as the awareness aspects intrinsic to collaborative environments. Issues related to the diversity of contexts of use are collected under the term plasticity. A great amount of tools have emerged offering a solution to some of these issues, although always focused on individual scenarios. We are working on reusing and specializing some already existing plasticity tools to the groupware design. The aim is to offer the benefits from plasticity and awareness jointly, trying to reach a real collaboration and a deeper understanding of multi-environment groupware scenarios. In particular, this paper presents a conceptual framework aimed at being a reference for the generation of plastic User Interfaces for collaborative environments in a systematic and comprehensive way. Starting from a previous conceptual framework for individual environments, inspired on the model-based approach, we introduce specific components and considerations related to groupware.
Resumo:
Light confinement strategies in thin-film silicon solar cells play a crucial role in the performance of the devices. In this work, the possible use of Ag-coated stamped polymers as reflectors to be used in n-i-p solar cells is studied. Different random roughnesses (nanometer and micrometer size) have been transferred on poly(methylmethacrylate) (PMMA) by hot embossing. Morphological and optical analyses of masters, stamped polymers and reflectors have been carried out evidencing a positive surface transference on the polymer and the viability of a further application in solar cells.
Resumo:
By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
We present molecular dynamics simulations of a simple model for polymer melts with intramolecular barriers. We investigate structural relaxation as a function of the barrier strength. Dynamic correlators can be consistently analyzed within the framework of the mode coupling theory of the glass transition. Control parameters are tuned in order to induce a competition between general packing effects and polymer-specific intramolecular barriers as mechanisms for dynamic arrest. This competition yields unusually large values of the so-called mode coupling theory exponent parameter and rationalizes qualitatively different observations for simple bead-spring and realistic polymers. The systematic study of the effect of intramolecular barriers presented here also establishes a fundamental difference between the nature of the glass transition in polymers and in simple glass formers.
Resumo:
We show that the coercive field in ferritin and ferrihydrite depends on the maximum magnetic field in a hysteresis loop and that coercivity and loop shifts depend both on the maximum and cooling fields. In the case of ferritin, we show that the time dependence of the magnetization also depends on the maximum and previous cooling fields. This behavior is associated to changes in the intraparticle energy barriers imprinted by these fields. Accordingly, the dependence of the coercive and loop-shift fields with the maximum field in ferritin and ferrihydrite can be described within the frame of a uniform-rotation model considering a dependence of the energy barrier with the maximum and the cooling fields.
Resumo:
Objective: The purpose of this study was to identify the influence of readiness of change for physical activity (PA), sociodemographic factors, lifestyle and physical activity status (PAS) on perceived barriers among Spanish university students. Participants: Seven hundred and seventy two (n = 772) men and women ages 17 - 39 at a north-west regional university in Spain participated in the study. Methods: The International Physical Activity Questionnaire, the States of Change for Physical Activity Behaviour Questionnaire and the Self-perceived Barriers for Physical Activity Questionnaire were used. Description, correlation and multiple regression analyses were completed. Results: Participants self-perceived low average-score barriers (2.6 ± 1.4 over 10.0). The 3-higher scores barriers corresponded to “too much work”; “lack of time for exercise” and “laziness”. Gender, PAS and self-perceived health were shown to be associated with perceived barriers. Conclusions: University institutions should consider those factors that predict barriers to PA to develop effective intervention programs.
Resumo:
In an explorative study, we investigated on German schoolteachers how they use, reuse, produce and manage Open Educational Resources. The main questions in this research have been, what their motivators and barriers are in their use of Open Educational Resources, what others can learn from their Open Educational Practices, and what we can do to raise the dissemination level of OER in schools.
Resumo:
Virtual learning environments are online spaces where learners interact with other learners, teachers, resources and the environment in itself. Although technology is meant to enhance the learning process, there are important issues regarding pedagogical and organizational aspects that must be addressed. In this paper we review the barriers detected in a virtual university which exclusively uses Internet as the main channel of communication, with no face-to-face requirements exceptthose related to final evaluation.
Resumo:
A long-standing question in evolutionary biology is what defines a species. The biological species concept considers a species as a population of individuals that interbreeds freely and produces viable offspring. Therefore, reproductive isolation is the essence of species. Hybrid necrosis is one form of post-zygotic reproductive isolation. In this chapter, we summarize what is known to date about this phenomenon and highlight progress made in the understanding of these immune-triggered hybrid incompatibilities through our research in the plant model Arabidopsis thaliana.
Resumo:
A long-standing question in evolutionary biology is what defines a species. The biological species concept considers a species as a population of individuals that interbreeds freely and produces viable offspring. Therefore, reproductive isolation is the essence of species. Hybrid necrosis is one form of post-zygotic reproductive isolation. In this chapter, we summarize what is known to date about this phenomenon and highlight progress made in the understanding of these immune-triggered hybrid incompatibilities through our research in the plant model Arabidopsis thaliana.
Resumo:
Successful plant invaders may have specific morphological and physiological traits that promote invasion in a new habitat. The Evolution of Increased Competitive Ability (EICA) hypothesis predicts that plants released from natural enemies in the introduced habitats are more competitive and perform better than plants from the native populations. An increased phenotypic plasticity may also favour invasion because it allows plants to function under a wider range of environments. In this study we used Senecio pterophorus (Asteraceae) to test whether introduced plant populations are 1)more competitive and 2) more plastic compared with the native populations. We conducted a common garden experiment using plants from the native range (South Africa, Eastern Cape), an expanded range (South Africa, Western Cape) and two introduced ranges (Australia and Europe) under different conditions of water availability. Contrary to the EICA and the increased plasticity hypotheses, plants from the invasive and expanded populations grew less and responded less to watering than those from their native range. These results may be caused by a depleted competition as well as the presence of genetic bottlenecks in the newly invaded areas.