155 resultados para Phase-Transformations


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study a model for water with a tunable intramolecular interaction Js, using mean-field theory and off-lattice Monte Carlo simulations. For all Js>~0, the model displays a temperature of maximum density. For a finite intramolecular interaction Js>0, our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely preempted by inevitable freezing. For J=0, the liquid-liquid critical point disappears at T=0.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of this potential affect the phase diagram of the system. We find a broad range of potential parameters for which the system has both a gas-liquid critical point C1 and a liquid-liquid critical point C2. For the liquid-gas critical point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the potential, have the same signs: they are positive for increasing width of the attractive well and negative for increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pressures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively reproduces the behavior of both critical points within some range of parameters, and gives us insight on the mechanisms ruling the dependence of the two critical points on the potential¿s parameters. The soft-core potential studied here resembles model potentials used for colloids, proteins, and potentials that have been related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in some systems where it has not yet been observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phase separation dynamics in the presence of externally imposed stirring is studied. The stirring is assumed independent of the concentration and it is generated with a well-defined energy spectrum. The domain growth process is either favored or frozen depending on the intensity and correlation length of this advective flow. This behavior is explained by analytical arguments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dealing with systems as complex as the cytoskeleton, we need organizing principles or, short of that, an empirical framework into which these systems fit. We report here unexpected invariants of cytoskeletal behavior that comprise such an empirical framework. We measured elastic and frictional moduli of a variety of cell types over a wide range of time scales and using a variety of biological interventions. In all instances elastic stresses dominated at frequencies below 300 Hz, increased only weakly with frequency, and followed a power law; no characteristic time scale was evident. Frictional stresses paralleled the elastic behavior at frequencies below 10 Hz but approached a Newtonian viscous behavior at higher frequencies. Surprisingly, all data could be collapsed onto master curves, the existence of which implies that elastic and frictional stresses share a common underlying mechanism. Taken together, these findings define an unanticipated integrative framework for studying protein interactions within the complex microenvironment of the cell body, and appear to set limits on what can be predicted about integrated mechanical behavior of the matrix based solely on cytoskeletal constituents considered in isolation. Moreover, these observations are consistent with the hypothesis that the cytoskeleton of the living cell behaves as a soft glassy material, wherein cytoskeletal proteins modulate cell mechanical properties mainly by changing an effective temperature of the cytoskeletal matrix. If so, then the effective temperature becomes an easily quantified determinant of the ability of the cytoskeleton to deform, flow, and reorganize.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The critical behavior of a system constituted by molecules with a preferred symmetry axis is studied by means of a Monte Carlo simulation of a simplified two-dimensional model. The system exhibits two phase transitions, associated with the vanishing of the positional order of the center of mass of the molecules and with the orientational order of the symmetry axis. The evolution of the order parameters and the specific heat is also studied. The transition associated with the positional degrees of freedom is found to change from a second-order to a first-order behavior when the two phase transitions are close enough, due to the coupling with the orientational degrees of freedom. This fact is qualitatively compared with similar results found in pure liquid crystals and liquid-crystal mixtures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated, in the L-S coupling scheme, the appearance of triplet pairing in fermionic droplets in which a single nl shell is active. The method is applied to a constant-strength model, for which we discuss the different phase transitions that take place as the number of particles in the shell is varied. Drops of 3He atoms can be plausible physical scenarios for the realization of the model.