20 resultados para Permistica et Uralica. Uˆnnepi könyv Csúcs Sándor tiszteletére


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work complements some of the results appearing in the article ?Publishing Performance in Economics: Spanish Rankings? by Dolado et al. . Specifically we focus on the robustness of the results regardless of the time span considered, the effect of the choice of a particular database on the final results, and the effects on changes in the unit of institutional measure (departments versus institutions as a whole). Differences are significant when we expand the time period considered. There are also significant but small differences if we combine datasets to derive the rankings. Finally, department rankings offer a more precise picture of the situation of the Spanish academics, although results do not differ substantially from those obtained when overall institutions are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’autor constata la presència de clivelles europeus conseqüència d’apostes que només la Unió Europea pot tractar ja que s’escapen de l’acció dels governs europeus. De les dos clivelles descobertes per Hix i Lord en el Parlament europeu, la que oposa els partidaris de la "Europa liberal" amb els de l’"Europa social" és avui determinant per dues raons, doctrinal la primera i empírica la segona, que l’autor desenvolupa en aquest treball.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this article several possibilities to approach the height of an algebraic curve defined over a number field : as an intersection number via the Arakelov theory, as a limit point of the heights of its algebraic points and, finally, using the minimal degree of Belyi functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is devoted to the statement known as the Bogomolov conjecture on small points. We present the outline of Zhang’s proof of the generalized version of the conjecture. An explicit bound for the height of a non-torsion variety of an abelian variety is obtained in the frame of Arakelov theory. Some further developments are mentioned.