23 resultados para Patient simulation
Resumo:
Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.
Resumo:
In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.
Resumo:
This paper analyzes the nature of health care provider choice inthe case of patient-initiated contacts, with special reference toa National Health Service setting, where monetary prices are zeroand general practitioners act as gatekeepers to publicly financedspecialized care. We focus our attention on the factors that mayexplain the continuously increasing use of hospital emergencyvisits as opposed to other provider alternatives. An extendedversion of a discrete choice model of demand for patient-initiatedcontacts is presented, allowing for individual and town residencesize differences in perceived quality (preferences) betweenalternative providers and including travel and waiting time asnon-monetary costs. Results of a nested multinomial logit model ofprovider choice are presented. Individual choice betweenalternatives considers, in a repeated nested structure, self-care,primary care, hospital and clinic emergency services. Welfareimplications and income effects are analyzed by computingcompensating variations, and by simulating the effects of userfees by levels of income. Results indicate that compensatingvariation per visit is higher than the direct marginal cost ofemergency visits, and consequently, emergency visits do not appearas an inefficient alternative even for non-urgent conditions.
Resumo:
We develop a general error analysis framework for the Monte Carlo simulationof densities for functionals in Wiener space. We also study variancereduction methods with the help of Malliavin derivatives. For this, wegive some general heuristic principles which are applied to diffusionprocesses. A comparison with kernel density estimates is made.
Estimates of patient costs related with population morbidity: Can indirect costs affect the results?
Resumo:
A number of health economics works require patient cost estimates as a basic information input.However the accuracy of cost estimates remains in general unspecified. We propose to investigate howthe allocation of indirect costs or overheads can affect the estimation of patient costs in order to allow forimprovements in the analysis of patient costs estimates. Instead of focusing on the costing method, thispaper proposes to highlight changes in variance explained observed when a methodology is chosen. Wecompare three overhead allocation methods for a specific Spanish population adjusted using the ClinicalRisk Groups (CRG), and we obtain different series of full-cost group estimates. As a result, there aresignificant gains in the proportion of the variance explained, depending upon the methodology used.Furthermore, we find that the global amount of variation explained by risk adjustment models dependsmainly on direct costs and is independent of the level of aggregation used in the classification system.
Resumo:
The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupledelectron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV toabout 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme.Electron and positron histories are generated on the basis of a mixed procedure, which combinesdetailed simulation of hard events with condensed simulation of soft interactions. A geometry packagecalled PENGEOM permits the generation of random electron-photon showers in material systemsconsisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. Thisreport is intended not only to serve as a manual of the PENELOPE code system, but also to provide theuser with the necessary information to understand the details of the Monte Carlo algorithm.