68 resultados para Non-linear wave equations
Resumo:
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
This special issue aims to cover some problems related to non-linear and nonconventional speech processing. The origin of this volume is in the ISCA Tutorial and Research Workshop on Non-Linear Speech Processing, NOLISP’09, held at the Universitat de Vic (Catalonia, Spain) on June 25–27, 2009. The series of NOLISP workshops started in 2003 has become a biannual event whose aim is to discuss alternative techniques for speech processing that, in a sense, do not fit into mainstream approaches. A selected choice of papers based on the presentations delivered at NOLISP’09 has given rise to this issue of Cognitive Computation.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay
Resumo:
We discuss some practical issues related to the use of the Parameterized Expectations Approach (PEA) for solving non-linear stochastic dynamic models with rational expectations. This approach has been applied in models of macroeconomics, financial economics, economic growth, contracttheory, etc. It turns out to be a convenient algorithm, especially when there is a large number of state variables and stochastic shocks in the conditional expectations. We discuss some practical issues having to do with the application of the algorithm, and we discuss a Fortran program for implementing the algorithm that is available through the internet.We discuss these issues in a battery of six examples.
Resumo:
In order to have references for discussing mathematical menus in political science, Ireview the most common types of mathematical formulae used in physics andchemistry, as well as some mathematical advances in economics. Several issues appearrelevant: variables should be well defined and measurable; the relationships betweenvariables may be non-linear; the direction of causality should be clearly identified andnot assumed on a priori grounds. On these bases, theoretically-driven equations onpolitical matters can be validated by empirical tests and can predict observablephenomena.
Resumo:
This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior.
Resumo:
Polynomial constraint solving plays a prominent role in several areas of hardware and software analysis and verification, e.g., termination proving, program invariant generation and hybrid system verification, to name a few. In this paper we propose a new method for solving non-linear constraints based on encoding the problem into an SMT problem considering only linear arithmetic. Unlike other existing methods, our method focuses on proving satisfiability of the constraints rather than on proving unsatisfiability, which is more relevant in several applications as we illustrate with several examples. Nevertheless, we also present new techniques based on the analysis of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad class of problems. The power of our approach is demonstrated by means of extensive experiments comparing our prototype with state-of-the-art tools on benchmarks taken both from the academic and the industrial world.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
We study the gravitational dual of a high-energy collision in a confining gauge theory. We consider a linearized approach in which two point particles traveling in an AdS-soliton background suddenly collide to form an object at rest (presumably a black hole for large enough center-of-mass energies). The resulting radiation exhibits the features expected in a theory with a mass gap: late-time power law tails of the form t −3/2, the failure of Huygens" principle and distortion of the wave pattern as it propagates. The energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At larger frequencies the spectrum has an upward-stairway structure, which corresponds to the excitation of the tower of massive states in the confining gauge theory. We discuss the importance of phenomenological cutoffs to regularize the divergent spectrum, and the aspects of the full non-linear collision that are expected to be captured by our approach.
Resumo:
In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
We study markets where the characteristics or decisions of certain agents are relevant but not known to their trading partners. Assuming exclusive transactions, the environment is described as a continuum economy with indivisible commodities. We characterize incentive efficient allocations as solutions to linear programming problems and appeal to duality theory to demonstrate the generic existence of external effects in these markets. Because under certain conditions such effects may generate non-convexities, randomization emerges as a theoretic possibility. In characterizing market equilibria we show that, consistently with the personalized nature of transactions, prices are generally non-linear in the underlying consumption. On the other hand, external effects may have critical implications for market efficiency. With adverse selection, in fact, cross-subsidization across agents with different private information may be necessary for optimality, and so, the market need not even achieve an incentive efficient allocation. In contrast, for the case of a single commodity, we find that when informational asymmetries arise after the trading period (e.g. moral hazard; ex post hidden types) external effects are fully internalized at a market equilibrium.
Resumo:
This paper analyzes the joint dynamics of two key macroeconomic variables for the conduct of monetary policy: inflation and the aggregate capacity utilization rate. An econometric procedure useful for estimating dynamic rational expectation models with unobserved components is developed and applied in this context. The method combines the flexibility of the unobserved components approach, based on the Kalman recursion, with the power of the general method of moments estimation procedure. A 'hyb id' Phillips curve relating inflation to the capacity utilization gap and incorporating forward and backward looking components is estimated. The results show that such a relationship in non-linear: the slope of the Phillips curve depends significantly on the magnitude of the capacity gap. These findings provide support for studying the implications of asymmetricmonetary policy rules.