137 resultados para Limit theorems (Probability theory)
Resumo:
We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.
Resumo:
We develop an algorithm to simulate a Gaussian stochastic process that is non-¿-correlated in both space and time coordinates. The colored noise obeys a linear reaction-diffusion Langevin equation with Gaussian white noise. This equation is exactly simulated in a discrete Fourier space.
Resumo:
We calculate noninteger moments ¿tq¿ of first passage time to trapping, at both ends of an interval (0,L), for some diffusion and dichotomous processes. We find the critical behavior of ¿tq¿, as a function of q, for free processes. We also show that the addition of a potential can destroy criticality.
Resumo:
The exact analytical expression for the Hausdorff dimension of free processes driven by Gaussian noise in n-dimensional space is obtained. The fractal dimension solely depends on the time behavior of the arbitrary correlation function of the noise, ranging from DX=1 for Orstein-Uhlenbeck input noise to any real number greater than 1 for fractional Brownian motions.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by dichotomous colored noise. We carry out an asymptotic expansion for short correlation times ¿c of the colored noise and find results that differ from those reported earlier. In particular, to retain corrections to O(¿c) we find that it is necessary to retain up to four derivatives of the potential function. We compare our asymptotic results to existing ones and also to exact ones obtained from numerical integration.
Resumo:
The phenomenon of human migration is certainly not new and it has been studied from a variety of perspectives. Yet, the attention on human migration and its determinant has not been fading over time as confirmed by recent contributions (see for instance Cushing and Poot 2004 and Rebhun and Raveh 2006). In this paper we combine the recent theoretical contributions by Douglas (1997) and Wall (2001) with the methodological advancements of Guimarães et al. (2000, 2003) to model inter-municipal migration flows in the Barcelona area. In order to do that, we employ two different types of count models, i.e. the Poisson and negative binomial and compare the estimations obtained. Our results show that, even after controlling for the traditional migration factors, QoL (measured with a Composite Index which includes numerous aspects and also using a list of individual variables) is an important determinant of short distance migration movements in the Barcelona area.
Resumo:
Testing weather or not data belongs could been generated by a family of extreme value copulas is difficult. We generalize a test and we prove that it can be applied whatever the alternative hypothesis. We also study the effect of using different extreme value copulas in the context of risk estimation. To measure the risk we use a quantile. Our results have motivated by a bivariate sample of losses from a real database of auto insurance claims. Methods are implemented in R.
Resumo:
Phenomena with a constrained sample space appear frequently in practice. This is the case e.g. with strictly positive data, or with compositional data, like percentages or proportions. If the natural measure of difference is not the absolute one, simple algebraic properties show that it is more convenient to work with a geometry different from the usual Euclidean geometry in real space, and with a measure different from the usual Lebesgue measure, leading to alternative models which better fit the phenomenon under study. The general approach is presented and illustrated using the normal distribution, both on the positive real line and on the D-part simplex. The original ideas of McAlister in his introduction to the lognormal distribution in 1879, are recovered and updated
Resumo:
We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.
Resumo:
Phenomena with a constrained sample space appear frequently in practice. This is the case e.g. with strictly positive data, or with compositional data, like percentages or proportions. If the natural measure of difference is not the absolute one, simple algebraic properties show that it is more convenient to work with a geometry different from the usual Euclidean geometry in real space, and with a measure different from the usual Lebesgue measure, leading to alternative models which better fit the phenomenon under study. The general approach is presented and illustrated using the normal distribution, both on the positive real line and on the D-part simplex. The original ideas of McAlister in his introduction to the lognormal distribution in 1879, are recovered and updated
Resumo:
The directional consistency and skew-symmetry statistics have been proposed as global measurements of social reciprocity. Although both measures can be useful for quantifying social reciprocity, researchers need to know whether these estimators are biased in order to assess descriptive results properly. That is, if estimators are biased, researchers should compare actual values with expected values under the specified null hypothesis. Furthermore, standard errors are needed to enable suitable assessment of discrepancies between actual and expected values. This paper aims to derive some exact and approximate expressions in order to obtain bias and standard error values for both estimators for round-robin designs, although the results can also be extended to other reciprocal designs.
Resumo:
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.
Resumo:
The purpose of this article is to introduce a Cartesian product structure into the social choice theoretical framework and to examine if new possibility results to Gibbard's and Sen's paradoxes can be developed thanks to it. We believe that a Cartesian product structure is a pertinent way to describe individual rights in the social choice theory since it discriminates the personal features comprised in each social state. First we define some conceptual and formal tools related to the Cartesian product structure. We then apply these notions to Gibbard's paradox and to Sen's impossibility of a Paretian liberal. Finally we compare the advantages of our approach to other solutions proposed in the literature for both impossibility theorems.
Resumo:
Ma (1996) studied the random order mechanism, a matching mechanism suggested by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that the random order mechanism does not always reach all stable matchings. Although Ma's (1996) result is true, we show that the probability distribution he presented - and therefore the proof of his Claim 2 - is not correct. The mistake in the calculations by Ma (1996) is due to the fact that even though the example looks very symmetric, some of the calculations are not as ''symmetric.''
Resumo:
We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.