55 resultados para Image interpolation
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images
Resumo:
In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram
Resumo:
A study of how the machine learning technique, known as gentleboost, could improve different digital watermarking methods such as LSB, DWT, DCT2 and Histogram shifting.
Resumo:
Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle
Resumo:
Demosaicking is a particular case of interpolation problems where, from a scalar image in which each pixel has either the red, the green or the blue component, we want to interpolate the full-color image. State-of-the-art demosaicking algorithms perform interpolation along edges, but these edges are estimated locally. We propose a level-set-based geometric method to estimate image edges, inspired by the image in-painting literature. This method has a time complexity of O(S) , where S is the number of pixels in the image, and compares favorably with the state-of-the-art algorithms both visually and in most relevant image quality measures.
Resumo:
Remote sensing spatial, spectral, and temporal resolutions of images, acquired over a reasonably sized image extent, result in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is very attractive for monitoring, management, and scienti c activities. With Moore's Law alive and well, more and more parallelism is introduced into all computing platforms, at all levels of integration and programming to achieve higher performance and energy e ciency. Being the geometric calibration process one of the most time consuming processes when using remote sensing images, the aim of this work is to accelerate this process by taking advantage of new computing architectures and technologies, specially focusing in exploiting computation over shared memory multi-threading hardware. A parallel implementation of the most time consuming process in the remote sensing geometric correction has been implemented using OpenMP directives. This work compares the performance of the original serial binary versus the parallelized implementation, using several multi-threaded modern CPU architectures, discussing about the approach to nd the optimum hardware for a cost-e ective execution.
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
When preparing an article on image restoration in astronomy, it is obvious that some topics have to be dropped to keep the work at reasonable length. We have decided to concentrate on image and noise models and on the algorithms to find the restoration. Topics like parameter estimation and stopping rules are also commented on. We start by describing the Bayesian paradigm and then proceed to study the noise and blur models used by the astronomical community. Then the prior models used to restore astronomical images are examined. We describe the algorithms used to find the restoration for the most common combinations of degradation and image models. Then we comment on important issues such as acceleration of algorithms, stopping rules, and parameter estimation. We also comment on the huge amount of information available to, and made available by, the astronomical community.
Resumo:
Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.
Resumo:
High-resolution side scan sonar has been used for mapping the seafloor of the Ría de Pontevedra. Four backscatter patterns have been mapped within the Ría: (1) Pattern with isolated reflections, correlated with granite and metamorphic outcrops and located close to the coastal prominence and Ons and Onza Islands. (2) Pattern of strong reflectivity usually located around the basement outcrops and near the coastline and produced by coarse-grained sediment. (3) Pattern of weak backscatter is correlated with fine sand to mud and comprising large areas in the central and deep part of the Ría, where the bottom currents are weak. It is generally featureless, except where pockmarks and anthropogenic features are present. (4) Patches of strong and weak backscatter are located in the boundary between coarse and fine-grained sediments and they are due to the effect of strong bottom currents. The presence of megaripples associated to both patterns of strong reflectivity and sedimentary patches indicate bedload transport of sediment during high energy conditions (storms). Side scan sonar records and supplementary bathymetry, bottom samples and hydrodynamic data reveal that the distribution of seafloor sediment is strongly related to oceanographic processes and the particular morphology and topography of the Ría.
Resumo:
Calculations of the binding energy of bound positron states in metal surfaces, with explicit inclusion of plasmon dispersion and single-particle effects, are presented. The binding energy is greatly reduced with respect to the undispersed case.
Resumo:
A surface dielectric function of a semi-infinite plane-bounded metal is defined in the spirit of the plasmon-pole dielectric function of the bulk. It is modeled in such a way that the surface-plasmon dispersion relation is recovered for small momentum transfer. This function is employed to compute the image potential at all distances outside the surface. Interaction with bulk modes is neglected for simplicity and clarity. The interaction of a massive point charge with a metal surface is also considered in the context of a boson model for surface-plasmon excitation. We present a new definition of the image potential for this case.
Resumo:
The aim of this article is to prove the real possibility of travelling intellectually to the Platonic image of the cave from different films. In this sense, one can speak of explicit references as in The Conformist by B. Bertolucci or in Shadowlands by R. Attenborough -if one bears in mind the Chronicles of Narnia by C. S. Lewis- or The Picture of Dorian Gray ¿if one bears in mind the well-known O. Wilde¿s novel-, but, on other occasions, although the Platonic influence cannot be proved, for instance in The Truman Show, A Room with a View or Brideshead Revisited, one can perfectly think of these films in order to guide the contemporary audiences to that Platonic image, since Plato himself affirms that it deals with an image which can be easily applied and, in first place, to his idealistic philosophy.