100 resultados para INFRARED FILTER SET
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
Resumo:
Als darrers anys la necessitat de connectar-se a internet des de qualsevol lloc s’ha incrementat exponencialment sobretot de manera inalàmbrica. Degut al finit espectre radioelèctric es tendeix a aprofitar totes les franges freqüencials d’aquest convivint diferents sistemes en franges properes podent induir-se interferències mútuament. Per evitar aquestes interferències es requereix de filtres a tots els dispositius els quals aïllin un sistema del adjacent. En aquest projecte es dóna una solució al cas concret de la convivència entre els sistemes Wi-Fi y WiMAX eliminant la banda Wi-Fi interferent en sistemes WiMAX. Aquesta solució consisteix en el disseny d’un filtre banda eliminada d’ordre 3 implementat mitjançant tecnologia BAW a partir de l’estructura y especificacions d’un filtre comercial. A més també es fa un petit estudi per veure si seria interessant una millora en els processos de fabricació del filtre per part del fabricant.
Resumo:
Aquest projecte abasta el disseny i el desenvolupament d’un model prototípic de Metodologia per a la Valoració de l’Aprenentatge Ambiental, a la qual anomenem “MEVA-Ambiental”. Per a fer possible aquesta fita ens hem basat en fonaments ontològics i constructivistes per representar i analitzar el coneixement a fi de poder quantificar l’Increment de Coneixement (IC). Per nosaltres l’IC esdevé un indicador socio-educatiu que ens servirà per a determinar l’efectivitat dels tallers d’educació ambiental en percentatge. En procedir d’aquesta manera, les qualificacions resultats poden es poden prendre com punt de partida per a desenvolupar estudis en el temps i comprendre com “s’ancora” el nou coneixement a l’estructura cognitiva dels aprenents. Més enllà del plantejament teòric de mètode, també proveïm la solució tècnica que mostra com n’és de funcional i d’aplicable la part empírica metodològica. A aquesta solució que hem anomenat “MEVA-Tool”, és una eina virtual que automatitza la recollida i tractament de dades amb una estructura dinàmica basada en “qüestionaris web” que han d’emplenar els estudiants, una “base de dades” que acumula la informació i en permet un filtratge selectiu, i més “Llibre Excel” que en fa el tractament informatiu, la representació gràfica dels resultats, l’anàlisi i conclusions.
Segimon Comas : importància i contextualització històrica d'un universitari i acadèmic del set-cents
Resumo:
Contextualització històrica dels inicis de l'Acadèmia de Bones Lletres al segle XVIII, i un dels seus artífexs, Segimon Comas.
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria delsConjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics espotencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funciódensitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps queles distribucions de probabilitat quàntiques
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature ofcompositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precisedefinition of composition. This is the aim of this oral contribution
Resumo:
This paper describes a new reliable method, based on modal interval analysis (MIA) and set inversion (SI) techniques, for the characterization of solution sets defined by quantified constraints satisfaction problems (QCSP) over continuous domains. The presented methodology, called quantified set inversion (QSI), can be used over a wide range of engineering problems involving uncertain nonlinear models. Finally, an application on parameter identification is presented
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
The effects of the nongray absorption (i.e., atmospheric opacity varying with wavelength) on the possible upper bound of the outgoing longwave radiation (OLR) emitted by a planetary atmosphere have been examined. This analysis is based on the semigray approach, which appears to be a reasonable compromise between the complexity of nongray models and the simplicity of the gray assumption (i.e., atmospheric absorption independent of wavelength). Atmospheric gases in semigray atmospheres make use of constant absorption coefficients in finite-width spectral bands. Here, such a semigray absorption is introduced in a one-dimensional (1D) radiative– convective model with a stratosphere in radiative equilibrium and a troposphere fully saturated with water vapor, which is the semigray gas. A single atmospheric window in the infrared spectrum has been assumed. In contrast to the single absolute limit of OLR found in gray atmospheres, semigray ones may also show a relative limit. This means that both finite and infinite runaway effects may arise in some semigray cases. Of particular importance is the finding of an entirely new branch of stable steady states that does not appear in gray atmospheres. This new multiple equilibrium is a consequence of the nongray absorption only. It is suspected that this new set of stable solutions has not been previously revealed in analyses of radiative–convective models since it does not appear for an atmosphere with nongray parameters similar to those for the earth’s current state
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density