42 resultados para Geometry of Fuzzy sets
Resumo:
Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.
Resumo:
We examine the timing of firms' operations in a formal model of labor demand. Merging a variety of data sets from Portugal from 1995-2004, we describe temporal patterns of firms' demand for labor and estimate production-functions and relative labor-demand equations. The results demonstrate the existence of substitution of employment across times of the day/week and show that legislated penalties for work at irregular hours induce firms to alter their operating schedules. The results suggest a role for such penalties in an unregulated labor market, such as the United States, in which unusually large fractions of work are performed at night and on weekends.
Resumo:
We construct a cofibrantly generated Thomason model structure on the category of small n-fold categories and prove that it is Quillen equivalent to the standard model structure on the category of simplicial sets. An n-fold functor is a weak equivalence if and only if the diagonal of its n-fold nerve is a weak equivalence of simplicial sets. We introduce an n-fold Grothendieck construction for multisimplicial sets, and prove that it is a homotopy inverse to the n-fold nerve. As a consequence, the unit and counit of the adjunction between simplicial sets and n-fold categories are natural weak equivalences.
Resumo:
When dealing with sustainability we are concerned with the biophysical as well as the monetary aspects of economic and ecological interactions. This multidimensional approach requires that special attention is given to dimensional issues in relation to curve fitting practice in economics. Unfortunately, many empirical and theoretical studies in economics, as well as in ecological economics, apply dimensional numbers in exponential or logarithmic functions. We show that it is an analytical error to put a dimensional unit x into exponential functions ( a x ) and logarithmic functions ( x a log ). Secondly, we investigate the conditions of data sets under which a particular logarithmic specification is superior to the usual regression specification. This analysis shows that logarithmic specification superiority in terms of least square norm is heavily dependent on the available data set. The last section deals with economists’ “curve fitting fetishism”. We propose that a distinction be made between curve fitting over past observations and the development of a theoretical or empirical law capable of maintaining its fitting power for any future observations. Finally we conclude this paper with several epistemological issues in relation to dimensions and curve fitting practice in economics
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
The relevance of the fragment relaxation energy term and the effect of the basis set superposition error on the geometry of the BF3⋯NH3 and C2H4⋯SO2 van der Waals dimers have been analyzed. Second-order Møller-Plesset perturbation theory calculations with the d95(d,p) basis set have been used to calculate the counterpoise-corrected barrier height for the internal rotations. These barriers have been obtained by relocating the stationary points on the counterpoise-corrected potential energy surface of the processes involved. The fragment relaxation energy can have a large influence on both the intermolecular parameters and barrier height. The counterpoise correction has proved to be important for these systems
Resumo:
Studies of large sets of SNP data have proven to be a powerful tool in the analysis of the genetic structure of human populations. In this work, we analyze genotyping data for 2,841 SNPs in 12 Sub-Saharan African populations, including a previously unsampled region of south-eastern Africa (Mozambique). We show that robust results in a world-wide perspective can be obtained when analyzing only 1,000 SNPs. Our main results both confirm the results of previous studies, and show new and interesting features in Sub-Saharan African genetic complexity. There is a strong differentiation of Nilo-Saharans, much beyond what would be expected by geography. Hunter-gatherer populations (Khoisan and Pygmies) show a clear distinctiveness with very intrinsic Pygmy (and not only Khoisan) genetic features. Populations of the West Africa present an unexpected similarity among them, possibly the result of a population expansion. Finally, we find a strong differentiation of the south-eastern Bantu population from Mozambique, which suggests an assimilation of a pre-Bantu substrate by Bantu speakers in the region.
Resumo:
In the past, sensors networks in cities have been limited to fixed sensors, embedded in particular locations, under centralised control. Today, new applications can leverage wireless devices and use them as sensors to create aggregated information. In this paper, we show that the emerging patterns unveiled through the analysis of large sets of aggregated digital footprints can provide novel insights into how people experience the city and into some of the drivers behind these emerging patterns. We particularly explore the capacity to quantify the evolution of the attractiveness of urban space with a case study of in the area of the New York City Waterfalls, a public art project of four man-made waterfalls rising from the New York Harbor. Methods to study the impact of an event of this nature are traditionally based on the collection of static information such as surveys and ticket-based people counts, which allow to generate estimates about visitors’ presence in specific areas over time. In contrast, our contribution makes use of the dynamic data that visitors generate, such as the density and distribution of aggregate phone calls and photos taken in different areas of interest and over time. Our analysis provides novel ways to quantify the impact of a public event on the distribution of visitors and on the evolution of the attractiveness of the points of interest in proximity. This information has potential uses for local authorities, researchers, as well as service providers such as mobile network operators.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
Sequential randomized prediction of an arbitrary binary sequence isinvestigated. No assumption is made on the mechanism of generating the bit sequence. The goal of the predictor is to minimize its relative loss, i.e., to make (almost) as few mistakes as the best ``expert'' in a fixed, possibly infinite, set of experts. We point out a surprising connection between this prediction problem and empirical process theory. First, in the special case of static (memoryless) experts, we completely characterize the minimax relative loss in terms of the maximum of an associated Rademacher process. Then we show general upper and lower bounds on the minimaxrelative loss in terms of the geometry of the class of experts. As main examples, we determine the exact order of magnitude of the minimax relative loss for the class of autoregressive linear predictors and for the class of Markov experts.
Resumo:
Self-reported home values are widely used as a measure of housing wealth by researchers employing a variety of data sets and studying a number of different individual and household level decisions. The accuracy of this measure is an open empirical question, and requires some type of market assessment of the values reported. In this research, we study the predictive power of self-reported housing wealth when estimating sales prices utilizing the Health and Retirement Study. We find that homeowners, on average, overestimate the value of their properties by between 5% and 10%. More importantly, we are the first to document a strong correlation between accuracy and the economic conditions at the time of the purchase of the property (measured by the prevalent interest rate, the growth of household income, and the growth of median housing prices). While most individuals overestimate the value of their properties, those who bought during more difficult economic times tend to be more accurate, and in some cases even underestimate the value of their house. These results establish a surprisingly strong, likely permanent, and in many cases long-lived, effect of the initial conditions surrounding the purchases of properties, on how individuals value them. This cyclicality of the overestimation of house prices can provide some explanations for the difficulties currently faced by many homeowners, who were expecting large appreciations in home value to rescue them in case of increases in interest rates which could jeopardize their ability to live up to their financial commitments.
Resumo:
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.