86 resultados para GLOBALLY HYPERBOLIC SPACETIMES
Resumo:
Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial conditions, we describe how to locally isometrically embed this in a larger non- positively curved 2-complex with free-by-cyclic fundamental group. This embedding procedure is used to produce examples of CAT(0) free-by-cyclic groups that contain closed hyperbolic surface subgroups with polynomial distortion of arbitrary degree. We also produce examples of CAT(0) hyperbolic free-by-cyclic groups that contain closed hyperbolic surface subgroups that are exponentially distorted.
Resumo:
We show that a particular free-by-cyclic group has CAT(0) dimension equal to 2, but CAT(-1) dimension equal to 3. We also classify the minimal proper 2-dimensional CAT(0) actions of this group; they correspond, up to scaling, to a 1-parameter family of locally CAT(0) piecewise Euclidean metrics on a fixed presentation complex for the group. This information is used to produce an infinite family of 2-dimensional hyperbolic groups, which do not act properly by isometries on any proper CAT(0) metric space of dimension 2. This family includes a free-by-cyclic group with free kernel of rank 6.
Resumo:
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.
Resumo:
In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.
Resumo:
The aim of this paper is to give an explicit formula for the SL2(C)-twisted Reidemeister torsion as defined in [6] in the case of twist knots. For hyperbolic twist knots, we also prove that the twisted Reidemeister torsion at the holonomy representation can be expressed as a rational function evaluated at the cusp shape of the knot. Tables given approximations of the twisted Reidemeister torsion for twist knots on some concrete examples are also enclosed.
Resumo:
Durant les últimes dècades, el paper dels horts familiars en la conservació de la agrobiodiversitat ha adquirit cada vegada més importància a nivell mundial. Les varietats locals que es cultiven en aquests horts tenen propietats intrínseques que les fan superiors a les comercials en molts aspectes, com han demostrat alguns dels estudis sobre aquests agroecosistemes duts a terme als Tròpics, i que posen en evidència l'actual sistema agrícola, alhora que representen una oportunitat per al desenvolupament sostenible de l´agricultura. En aquest treball d'investigació, dut a terme a la Vall Fosca (Pirineus Català d'Espanya) s'ha estudiat el paper les varietats locals dels horts familiars com a mecanisme de millora i manteniment d'aquests agroecosistemes, analitzant quins són els possibles factors sociodemogràfics i ecològics que condicionen el desenvolupament d'aquestes varietats als horts familiars.
Resumo:
Cada cop més, els editors d'avui dia actuen a nivell global per proveïr informació electrònica, i és responsabilitat de les biblioteques actuar a nivell global per expressar les seves posicions al mercat pel que fa a les polítiques de preus i altres requisits i condicions relatius a l'adquisició d'informació publicada. Aquest document actualitza les declaracions anteriors de l'ICOLC sobre el context actual de la informació electrònica, el context que desitjem per al futur, i els usos preferits per tal que els consorcis de biblioteques i les seves biblioteques membre puguin assolir els resultats desitjats. En aquesta actualització general, emfatitzem els aspectes referents a l'economia i les polítiques de preus, que han estat una preocupació destacada des de les primeres trobades de l'ICOLC el 1996 i al llarg de les Declaracions que hem fet fins ara.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].
Resumo:
The usual way to investigate the statistical properties of finitely generated subgroups of free groups, and of finite presentations of groups, is based on the so-called word-based distribution: subgroups are generated (finite presentations are determined) by randomly chosen k-tuples of reduced words, whose maximal length is allowed to tend to infinity. In this paper we adopt a different, though equally natural point of view: we investigate the statistical properties of the same objects, but with respect to the so-called graph-based distribution, recently introduced by Bassino, Nicaud and Weil. Here, subgroups (and finite presentations) are determined by randomly chosen Stallings graphs whose number of vertices tends to infinity. Our results show that these two distributions behave quite differently from each other, shedding a new light on which properties of finitely generated subgroups can be considered frequent or rare. For example, we show that malnormal subgroups of a free group are negligible in the raph-based distribution, while they are exponentially generic in the word-based distribution. Quite surprisingly, a random finite presentation generically presents the trivial group in this new distribution, while in the classical one it is known to generically present an infinite hyperbolic group.
Resumo:
In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.
Resumo:
In the context of resource allocation on the basis of priorities, Ergin (2002) identifies a necessary and sufficient condition on the priority structure such that the student-optimal stable mechanism satisfies a consistency principle. Ergin (2002) formulates consistency as a local property based on a fixed population of agents and fixed resources -- we refer to this condition as local consistency and to his condition on the priority structure as local acyclicity. We identify a related but stronger necessary and sufficient condition (unit acyclicity) on the priority structure such that the student-optimal stable mechanism satisfies a more standard global consistency property. Next, we provide necessary and sufficient conditions for the student-optimal stable mechanism to satisfy converse consistency principles. We identify a necessary and sufficient condition (local shift-freeness) on the priority structure such that the student-optimal stable mechanism satisfies local converse consistency. Interestingly, local acyclicity implies local shift-freeness and hence the student-optimal stable mechanism more frequently satisfies local converse consistency than local consistency. Finally, in order for the student-optimal stable mechanism to be globally conversely consistent, one again has to impose unit acyclicity on the priority structure. Hence, unit acyclicity is a necessary and sufficient condition on the priority structure for the student-optimal stable mechanism to satisfy global consistency or global converse consistency.
Resumo:
OER-based learning has the potential to overcome many shortcomings and problems of traditional education. It is not hampered by IP restrictions; can depend on collaborative, cumulative, iterative refinement of resources; and the digital form provides unprecedented flexibility with respect to configuration and delivery. The OER community is a progressive group of educators and learners with decades of learning research to draw from, who know that we must prepare learners for an evolving and diverse reality. Despite this OER tends to replicate the unsuccessful characteristics of traditional education. To remedy this we may need to remember the importance of imperfection, mistakes, problems, disagreement, and the incomplete for engaged learning, and relinquish our notions of perfection, acknowledging that learners learn differently and we need diverse learners. We must stretch our perceptions of quality and provide mechanisms for engaging the incredible pool of educators globally to fulfill the promise of inclusive education.
Resumo:
We compare correspondance análisis to the logratio approach based on compositional data. We also compare correspondance análisis and an alternative approach using Hellinger distance, for representing categorical data in a contingency table. We propose a coefficient which globally measures the similarity between these approaches. This coefficient can be decomposed into several components, one component for each principal dimension, indicating the contribution of the dimensions to the difference between the two representations. These three methods of representation can produce quite similar results. One illustrative example is given