65 resultados para Film music
Resumo:
A partir de un acto interactivo con la wwww.aeat.es, el usuario envía telemáticamente el modelo 100 en un entorno con tendencia a la incertidumbre y a las dificultades de usabilidad, sin embargo, la investigación pretende demostrar que en dicho acto, el usuario construye una historia narrativa debido a la existencia de una motivación y a la tendencia connatural a la representación narrativa, a pesar que la web no fue intencionalmente construida con propósitos narrativos. El estudio, además, enfoca la interacción como un acto inmersivo y reconoce en la incertidumbre las variables que determinan la continuidad y rumbo del relato. La investigación propone un modelo interpretativo para el análisis y la estructuración del espacio y la historia implícita. Y a nivel exploratorio, se propone la aplicación del Mouse Tracking como técnica científica.
Characterization of intonation in Karṇāṭaka music by parametrizing context-based Svara Distributions
Resumo:
Intonation is a fundamental music concept that has a special relevance in Indian art music. It is characteristic of the rāga and intrinsic to the musical expression of the performer. Describing intonation is of importance to several information retrieval tasks like the development of rāga and artist similarity measures. In our previous work, we proposed a compact representation of intonation based on the parametrization of the pitch histogram of a performance and demonstrated the usefulness of this representation through an explorative rāga recognition task in which we classified 42 vocal performances belonging to 3 rāgas using parameters of a single svara. In this paper, we extend this representation to employ context-based svara distributions, which are obtained with a different approach to find the pitches belonging to each svara. We quantitatively compare this method to our previous one, discuss the advantages, and the necessary melodic analysis to be carried out in future.
Resumo:
The main information sources to study a particular piece of music are symbolic scores and audio recordings. These are complementary representations of the piece and it isvery useful to have a proper linking between the two of the musically meaningful events. For the case of makam music of Turkey, linking the available scores with the correspondingaudio recordings requires taking the specificities of this music into account, such as the particular tunings, the extensive usage of non-notated expressive elements, and the way in which the performer repeats fragmentsof the score. Moreover, for most of the pieces of the classical repertoire, there is no score written by the original composer. In this paper, we propose a methodology to pair sections of a score to the corresponding fragments of audio recording performances. The pitch information obtained from both sources is used as the common representationto be paired. From an audio recording, fundamental frequency estimation and tuning analysis is done to compute a pitch contour. From the corresponding score, symbolic note names and durations are converted to a syntheticpitch contour. Then, a linking operation is performed between these pitch contours in order to find the best correspondences.The method is tested on a dataset of 11 compositions spanning 44 audio recordings, which are mostly monophonic. An F3-score of 82% and 89% are obtained with automatic and semi-automatic karar detection respectively,showing that the methodology may give us a needed tool for further computational tasks such as form analysis, audio-score alignment and makam recognition.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
The aim of this article is to show how an ancient myth, that of the three genres, also known as the myth of the androgynous by Aristophanes in Plato¿s Symposium, becomes for John Cameron Mitchell the suitable image in order to explain the peculiar personality of a man, Hedwig, who by means of a surgical operation becomes in his turn an imperfect androgynous but symbolises the need of a sole mankind or the unity of different worlds, just as he belonged to both Berlins divided by an already fallen wall, which permitted their inhabitants to recover their lost unity and identity.
Resumo:
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).
Resumo:
A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.
Resumo:
We present a study on the development and the evaluation of a fully automated radio-frequency glow discharge system devoted to the deposition of amorphous thin film semiconductors and insulators. The following aspects were carefully addressed in the design of the reactor: (1) cross contamination by dopants and unstable gases, (2) capability of a fully automated operation, (3) precise control of the discharge parameters, particularly the substrate temperature, and (4) high chemical purity. The new reactor, named ARCAM, is a multiplasma-monochamber system consisting of three separated plasma chambers located inside the same isothermal vacuum vessel. Thus, the system benefits from the advantages of multichamber systems but keeps the simplicity and low cost of monochamber systems. The evaluation of the reactor performances showed that the oven-like structure combined with a differential dynamic pumping provides a high chemical purity in the deposition chamber. Moreover, the studies of the effects associated with the plasma recycling of material from the walls and of the thermal decomposition of diborane showed that the multiplasma-monochamber design is efficient for the production of abrupt interfaces in hydrogenated amorphous silicon (a-Si:H) based devices. Also, special attention was paid to the optimization of plasma conditions for the deposition of low density of states a-Si:H. Hence, we also present the results concerning the effects of the geometry, the substrate temperature, the radio frequency power and the silane pressure on the properties of the a-Si:H films. In particular, we found that a low density of states a-Si:H can be deposited at a wide range of substrate temperatures (100°C
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
In this paper we report on the growth of thick films of magnetoresistive La2/3Sr1/3MnO3 by using spray and screen printing techniques on various substrates (Al2O3 and ZrO2). The growth conditions are explored in order to optimize the microstructure of the films. The films display a room-temperature magnetoresistance of 0.0012%/Oe in the 1 kOe field region. A magnetic sensor is described and tested.
Resumo:
There is nothing as amazing and fascinating as children learning process. Between 0 and 6 years old, a child brain develops in a waythat will never be repeated. At this age, children are eager to discover and they have great potential of active and affective life.Because of this, their learning capacity in this period is incalculable. (Jordan-Decarbo y Nelson, 2002; Wild, 1999).Pre-school Education is a unique and special stage, with self identity, which aims are:attending children as a whole,motivate them to learn,give them an affective and stable environment in which they can grow up and get to be balanced and confident people and inwhich they can relate to others, learn, enjoy and be happy.Arts, Music, Visual Arts and Drama (Gardner, 1994) can provide a framework of special, even unique, personal expression.With the aim of introducing qualitative improvements in the education of children and to ensure their emotional wellbeing, and havingnoticed that teachers had important needs and concerns as regards to diversity in their student groups, we developed a programbased on the detection of needs and concerns explained by professionals in education.This program of Grupo edebé, object of our research, is a multicultural, interdisciplinary and globalizing project the aims of which are:developing children's talent and personality,keeping their imagination and creativity and using these as a learning resource,promoting reasoning, favouring expression and communication,providing children with the tools to manage their emotions,and especially, introducing Arts as a procedure to increase learning.We wanted to start the research by studying the impact (Brice, 2003) that this last point had on the learning of five-year-old childrenschooled in multicultural environments.Therefore, the main goal of the research was the assessment of the implementation of a child education programme attending todiversity in a population of five-year-old children, specifically in the practice of procedures based on the use of Arts (music, arts andcrafts and theatre) as a vehicle or procedure for learning contents in Pre-school stage.Because children emotional welfare was a subject of our concern, and bearing in mind that the affective aspects are of vitalimportance for learning and child development (Parke and Gauvain, 2009), Grupo Edebé has also evaluated the starting, evolving andfinal impact in five-year-old children given that they finish Pre-school education at that age.