92 resultados para Equation prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher-Kolmogorov-Petrovskii-Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy travelling wave solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the effect on price of different characteristics of holiday hotels in the sun-and-beach segment, under the hedonic function perspective. Monthly prices of the majority of hotels in the Spanish continental Mediterranean coast are gathered from May to October 1999 from the tour operator catalogues. Hedonic functions are specified as random-effect models and parametrized as structural equation models with two latent variables, a random peak season price and a random width of seasonal fluctuations. Characteristics of the hotel and the region where they are located are used as predictors of both latent variables. Besides hotel category, region, distance to the beach, availability of parking place and room equipment have an effect on peak price and also on seasonality. 3- star hotels have the highest seasonality and hotels located in the southern regions the lowest, which could be explained by a warmer climate in autumn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting formeasurement error. From the various specifications, Jöreskog and Yang's(1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topological indices have been applied to build QSAR models for a set of 20 antimalarial cyclic peroxy cetals. In order to evaluate the reliability of the proposed linear models leave-n-out and Internal Test Sets (ITS) approaches have been considered. The proposed procedure resulted in a robust and consensued prediction equation and here it is shown why it is superior to the employed standard cross-validation algorithms involving multilinear regression models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El principal objectiu del projecte era desenvolupar millores conceptuals i metodològiques que permetessin una millor predicció dels canvis en la distribució de les espècies (a una escala de paisatge) derivats de canvis ambientals en un context dominat per pertorbacions. En un primer estudi, vàrem comparar l'eficàcia de diferents models dinàmics per a predir la distribució de l'hortolà (Emberiza hortulana). Els nostres resultats indiquen que un model híbrid que combini canvis en la qualitat de l'hàbitat, derivats de canvis en el paisatge, amb un model poblacional espacialment explícit és una aproximació adequada per abordar canvis en la distribució d'espècies en contextos de dinàmica ambiental elevada i una capacitat de dispersió limitada de l'espècie objectiu. En un segon estudi abordarem la calibració mitjançant dades de seguiment de models de distribució dinàmics per a 12 espècies amb preferència per hàbitats oberts. Entre les conclusions extretes destaquem: (1) la necessitat de que les dades de seguiment abarquin aquelles àrees on es produeixen els canvis de qualitat; (2) el biaix que es produeix en la estimació dels paràmetres del model d'ocupació quan la hipòtesi de canvi de paisatge o el model de qualitat d'hàbitat són incorrectes. En el darrer treball estudiarem el possible impacte en 67 espècies d’ocells de diferents règims d’incendis, definits a partir de combinacions de nivells de canvi climàtic (portant a un augment esperat de la mida i freqüència d’incendis forestals), i eficiència d’extinció per part dels bombers. Segons els resultats dels nostres models, la combinació de factors antropogènics del regim d’incendis, tals com l’abandonament rural i l’extinció, poden ser més determinants per als canvis de distribució que els efectes derivats del canvi climàtic. Els productes generats inclouen tres publicacions científiques, una pàgina web amb resultats del projecte i una llibreria per a l'entorn estadístic R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the approximately 200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE, PROCRUSTES, and BLASTX was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The completion of the sequencing of the mouse genome promises to help predict human genes with greater accuracy. While current ab initio gene prediction programs are remarkably sensitive (i.e., they predict at least a fragment of most genes), their specificity is often low, predicting a large number of false-positive genes in the human genome. Sequence conservation at the protein level with the mouse genome can help eliminate some of those false positives. Here we describe SGP2, a gene prediction program that combines ab initio gene prediction with TBLASTX searches between two genome sequences to provide both sensitive and specific gene predictions. The accuracy of SGP2 when used to predict genes by comparing the human and mouse genomes is assessed on a number of data sets, including single-gene data sets, the highly curated human chromosome 22 predictions, and entire genome predictions from ENSEMBL. Results indicate that SGP2 outperforms purely ab initio gene prediction methods. Results also indicate that SGP2 works about as well with 3x shotgun data as it does with fully assembled genomes. SGP2 provides a high enough specificity that its predictions can be experimentally verified at a reasonable cost. SGP2 was used to generate a complete set of gene predictions on both the human and mouse by comparing the genomes of these two species. Our results suggest that another few thousand human and mouse genes currently not in ENSEMBL are worth verifying experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners. Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available. For protein sequences that align with at least 40% sequence identity to a known enzyme, the specificity of our method in predicting the first three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST. Conclusion: Our method can also be used in proteins for which homologous sequences with known interacting partners can be detected. Thus, our method could increase 10% the specificity of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone.