37 resultados para Edge based analysis
Resumo:
This paper presents a historical examination of employment in old age in Spain, in order to characterize this labour segment and identify and analyse its specific problems. One of these problems is the life-cycle deskilling process, already shown for certain national cases. This study explores whether this hypothesis also holds in Spain. The perspective used is essentially quantitative, as our analysis is based on the age-profession tables in Spanish population censuses from 1900 to 1970.
Resumo:
This paper presents a historical examination of employment in old age in Spain, in order to characterize this labour segment and identify and analyse its specific problems. One of these problems is the life-cycle deskilling process, already shown for certain national cases. This study explores whether this hypothesis also holds in Spain. The perspective used is essentially quantitative, as our analysis is based on the age-profession tables in Spanish population censuses from 1900 to 1970.
Resumo:
To analyse the association between chondrocalcinosis and osteoarthritis (OA) of the hands and knees in an unselected elderly rural population. METHODS--A community based cross sectional study was performed in individuals randomly selected from a previous epidemiological survey on the prevalence of chondrocalcinosis in people older than 60 years from Osona county, Catalonia, northeastern Spain. Radiological OA (grade 2 or more of Kellgren's classification) was evaluated in 26 individuals with chondrocalcinosis and in 104 controls. A total of 18 articular areas of both knees (medial and lateral tibiofemoral compartments) and hands (first, second and third metacarpophalangeal (MCP), first carpometacarpal, trapezium-scaphoid, radiocarpal and distal radioulnar joints) were studied. RESULTS--Radiological changes of OA in the knees were more common in subjects with chondrocalcinosis than in those without it, with an odds ratio adjusted for age and gender (aOR) of 4.3 (95% confidence interval (CI) 1.6 to 11.8, p = 0.005). OA was also more frequent in almost all areas of the hands in individuals with chondrocalcinosis, though the difference reached statistical significance only in the MCP joints (aOR 3.1; 95% CI 1.1 to 8.8; p = 0.033). However, taking into account the side and the different joint compartments analysed, the association between chondrocalcinosis and OA was significant only in the lateral tibiofemoral compartment and the left MCP joints. CONCLUSIONS--In an elderly population unselected for their rheumatic complaints, there was a real association between OA and chondrocalcinosis. This association was particularly relevant in the lateral tibiofemoral compartment of the knee and in the first three left MCP joints.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
Resumo:
Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.
Resumo:
This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Resumo:
Comparative analysis of gene fragments of six housekeeping loci, distributed around the two chromosomes of Vibrio cholerae, has been carried out for a collection of 29 V. cholerae O139 Bengal strains isolated from India during the first epidemic period (1992 to 1993). A toxigenic O1 ElTor strain from the seventh pandemic and an environmental non-O1/non-O139 strain were also included in this study. All loci studied were polymorphic, with a small number of polymorphic sites in the sequenced fragments. The genetic diversity determined for our O139 population is concordant with a previous multilocus enzyme electrophoresis study in which we analyzed the same V. cholerae O139 strains. In both studies we have found a higher genetic diversity than reported previously in other molecular studies. The results of the present work showed that O139 strains clustered in several lineages of the dendrogram generated from the matrix of allelic mismatches between the different genotypes, a finding which does not support the hypothesis previously reported that the O139 serogroup is a unique clone. The statistical analysis performed in the V. cholerae O139 isolates suggested a clonal population structure. Moreover, the application of the Sawyer's test and split decomposition to detect intragenic recombination in the sequenced gene fragments did not indicate the existence of recombination in our O139 population.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
Resumo:
We perform a meta - analysis of 21 studies that estimate the elasticity of the price of waste collection demand upon waste quantities, a prior literature review having revealed that the price elasticity differs markedly. Based on a meta - regression with a total of 65 observations, we find no indication that municipal data give higher estimates for price elasticities than those associated with household data. Furthermore, there is no evidence that treating prices as exogenous underestimates the price elasticity. We find that much of the variation can be explained by sample size, the use of a weight - based as opposed to a volume - based pricing system, and the pricing of compostable waste. We also show that price elasticities determined in the USA and point estimations of elasticities are more elastic, but these effects are not robust to the changing of model specifications. Finally, our tests show that there is no evidence of publication bias while there is some evidence of the existence of genuine empirical effect.
Resumo:
In this work we present and analyze the application of an experience of Project Based Learning (PBL) in the matter of Physics II of the Industrial Design university degree (Girona University) during 2005-2006 courses. This methodology was applied to the Electrostatic and Direct Current subjects. Furthermore, evaluation and self evaluation results were shown and the academic results were compared with results obtained in the same subjects applying conventional teaching methods
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed