69 resultados para Convex


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study a class of cooperative sequencing games that arise from one-machine sequencing situations in which chain precedence relations are imposed on the jobs. It is shown that these sequencing games are convex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let M be a compact hyperbolic 3-manifold with incompressible boundary. Consider a complete hyperbolic metric on int(M). To each geometrically finite end of int(M) are traditionnaly associated 3 different invariants : the hyperbolic metric associated to the conformal structure at infinity, the hyperbolic metric on the boundary of the convex core and the bending measured lamination of the convex core. In this note we show how invariants of different types can be realised in the different ends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is often alleged that high auction prices inhibit service deployment. We investigate this claim under the extreme case of financially constrained bidders. If demand is just slightly elastic, auctions maximize consumer surplus if consumer surplus is a convex function of quantity (a common assumption), or if consumer surplus is concave and the proportion of expenditure spent on deployment is greater than one over the elasticity of demand. The latter condition appears to be true for most of the large telecom auctions in the US and Europe. Thus, even if high auction prices inhibit service deployment, auctions appear to be optimal from the consumers' point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les xarxes híbrides satèl·lit-terrestre ofereixen connectivitat a zones remotes i aïllades i permeten resoldre nombrosos problemes de comunicacions. No obstant, presenten diversos reptes, ja que realitzen la comunicació per un canal mòbil terrestre i un canal satèl·lit contigu. Un d'aquests reptes és trobar mecanismes per realitzar eficientment l'enrutament i el control de flux, de manera conjunta. L'objectiu d'aquest projecte és simular i estudiar algorismes existents que resolguin aquests problemes, així com proposar-ne de nous, mitjançant diverses tècniques d'optimització convexa. A partir de les simulacions realitzades en aquest estudi, s'han analitzat àmpliament els diversos problemes d'enrutament i control de flux, i s'han avaluat els resultats obtinguts i les prestacions dels algorismes emprats. En concret, s'han implementat de manera satisfactòria algorismes basats en el mètode de descomposició dual, el mètode de subgradient, el mètode de Newton i el mètode de la barrera logarítmica, entre d'altres, per tal de resoldre els problemes d'enrutament i control de flux plantejats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport costs in address models of differentiation are usually modeled as separable of the consumption commodity and with a parametric price. However, there are many sectors in an economy where such modeling is not satisfactory either because transportation is supplied under oligopolistic conditions or because there is a difference (loss) between the amount delivered at the point of production and the amount received at the point of consumption. This paper is a first attempt to tackle these issues proposing to study competition in spatial models using an iceberg-like transport cost technology allowing for concave and convex melting functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies global webs on the projective plane with vanishing curvature. The study is based on an interplay of local and global arguments. The main local ingredient is a criterium for the regularity of the curvature at the neighborhood of a generic point of the discriminant. The main global ingredient, the Legendre transform, is an avatar of classical projective duality in the realm of differential equations. We show that the Legendre transform of what we call reduced convex foliations are webs with zero curvature, and we exhibit a countable infinity family of convex foliations which give rise to a family of webs with zero curvature not admitting non-trivial deformations with zero curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The commitment among agents has always been a difficult task, especially when they have to decide how to distribute the available amount of a scarce resource among all. On the one hand, there are a multiplicity of possible ways for assigning the available amount; and, on the other hand, each agent is going to propose that distribution which provides her the highest possible award. In this paper, with the purpose of making this agreement easier, firstly we use two different sets of basic properties, called Commonly Accepted Equity Principles, to delimit what agents can propose as reasonable allocations. Secondly, we extend the results obtained by Chun (1989) and Herrero (2003), obtaining new characterizations of old and well known bankruptcy rules. Finally, using the fact that bankruptcy problems can be analyzed from awards and losses, we define a mechanism which provides a new justification of the convex combinations of bankruptcy rules. Keywords: Bankruptcy problems, Unanimous Concessions procedure, Diminishing Claims mechanism, Piniles’ rule, Constrained Egalitarian rule. JEL classification: C71, D63, D71.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that nuclear C*-algebras have a re ned version of the completely positive approximation property, in which the maps that approximately factorize through finite dimensional algebras are convex combinations of order zero maps. We use this to show that a separable nuclear C*-algebra A which is closely contained in a C*-algebra B embeds into B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a distribution problem, and specfii cally in bankruptcy issues, the Proportional (P) and the Egalitarian (EA) divisions are two of the most popular ways to resolve the conflict. The Constrained Equal Awards rule (CEA) is introduced in bankruptcy literature to ensure that no agent receives more than her claim, a problem that can arise when using the egalitarian division. We propose an alternative modi cation, by using a convex combination of P and EA. The recursive application of this new rule finishes at the CEA rule. Our solution concept ensures a minimum amount to each agent, and distributes the remaining estate in a proportional way. Keywords: Bankruptcy problems, Proportional rule, Equal Awards, Convex combination of rules, Lorenz dominance. JEL classi fication: C71, D63, D71.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a bankruptcy situation, not all claimants are affected in the same way. In particular, some depositors may enter into a situation of personal bankruptcy if they lose part of their investments. Events of this kind may lead to a social catastrophe. We propose discrimination among the claimants as a possible solution. A fact considered in the American bankruptcy law (among others) that establishes some discrimination on the claimants, or the Santander Bank that in the Madoff’s case reimbursed only the deposits to its particular customers. Moreover, the necessity of discriminating has already been mentioned in different contexts by Young (1988), Bossert (1995), Thomson (2003) and Pulido et al. (2002, 2007), for instance. In this paper, we take a bankruptcy solution as the reference point. Given this initial allocation, we make transfers from richer to poorer with the purpose of distributing not only the personal incurred losses as evenly as possible but also the transfers in a progressive way. The agents are divided into two groups depending on their personal monetary value (wealth, net-income, GDP or any other characteristic). Then, we impose a set of Axioms that bound the maximal transfer that each net-contributor can make and each net-receiver can obtain. Finally, we define a value discriminant solution, and we characterize it by means of the Lorenz criterion. Endogenous convex combinations between solutions are also considered. Keywords: Bankruptcy, Discrimination, Compensation, Rules JEL classification: C71, D63, D71.