46 resultados para Continuous-time Markov Chain
Resumo:
In this paper we study the disability transition probabilities (as well as the mortalityprobabilities) due to concurrent factors to age such as income, gender and education. Althoughit is well known that ageing and socioeconomic status influence the probability ofcausing functional disorders, surprisingly little attention has been paid to the combined effectof those factors along the individuals' life and how this affects the transition from one degreeof disability to another. The assumption that tomorrow's disability state is only a functionof the today's state is very strong, since disability is a complex variable that depends onseveral other elements than time. This paper contributes into the field in two ways: (1) byattending the distinction between the initial disability level and the process that leads tohis course (2) by addressing whether and how education, age and income differentially affectthe disability transitions. Using a Markov chain discrete model and a survival analysis, weestimate the probability by year and individual characteristics that changes the state of disabilityand the duration that it takes its progression in each case. We find that people withan initial state of disability have a higher propensity to change and take less time to transitfrom different stages. Men do that more frequently than women. Education and incomehave negative effects on transition. Moreover, we consider the disability benefits associatedto those changes along different stages of disability and therefore we offer some clues onthe potential savings of preventive actions that may delay or avoid those transitions. Onpure cost considerations, preventive programs for improvement show higher benefits thanthose for preventing deterioration, and in general terms, those focussing individuals below65 should go first. Finally the trend of disability in Spain seems not to change among yearsand regional differences are not found.
Resumo:
This paper describes a methodology to estimate the coefficients, to test specification hypothesesand to conduct policy exercises in multi-country VAR models with cross unit interdependencies, unit specific dynamics and time variations in the coefficients. The framework of analysis is Bayesian: a prior flexibly reduces the dimensionality of the model and puts structure on the time variations; MCMC methods are used to obtain posterior distributions; and marginal likelihoods to check the fit of various specifications. Impulse responses and conditional forecasts are obtained with the output of MCMC routine. The transmission of certain shocks across countries is analyzed.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.
Resumo:
This paper provides empirical evidence that continuous time models with one factor of volatility, in some conditions, are able to fit the main characteristics of financial data. It also reports the importance of the feedback factor in capturing the strong volatility clustering of data, caused by a possible change in the pattern of volatility in the last part of the sample. We use the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate logarithmic models with one and two stochastic volatility factors (with and without feedback) and to select among them.
Resumo:
We analyze a continuous-time bilateral double auction in the presence of two-sided incomplete information and a smallest money unit. A distinguishing feature of our model is that intermediate concessions are not observable by the adversary: they are only communicated to a passive auctioneer. An alternative interpretation is that of mediated bargaining. We show that an equilibrium using only the extreme agreements always exists and display the necessary and sufficient condition for the existence of (perfect Bayesian) equilibra which yield intermediate agreements. For the symmetric case with uniform type distribution we numerically calculate the equilibria. We find that the equilibrium which does not use compromise agreements is the least efficient, however, the rest of the equilibria yield the lower social welfare the higher number of compromise agreements are used.
Resumo:
The main purpose of this work is to give a survey of main monotonicity properties of queueing processes based on the coupling method. The literature on this topic is quite extensive, and we do not consider all aspects of this topic. Our more concrete goal is to select the most interesting basic monotonicity results and give simple and elegant proofs. Also we give a few new (or revised) proofs of a few important monotonicity properties for the queue-size and workload processes both in single-server and multi- server systems. The paper is organized as follows. In Section 1, the basic notions and results on coupling method are given. Section 2 contains known coupling results for renewal processes with focus on construction of synchronized renewal instants for a superposition of independent renewal processes. In Section 3, we present basic monotonicity results for the queue-size and workload processes. We consider both discrete-and continuous-time queueing systems with single and multi servers. Less known results on monotonicity of queueing processes with dependent service times and interarrival times are also presented. Section 4 is devoted to monotonicity of general Jackson-type queueing networks with Markovian routing. This section is based on the notable paper [17]. Finally, Section 5 contains elements of stability analysis of regenerative queues and networks, where coupling and monotonicity results play a crucial role to establish minimal suficient stability conditions. Besides, we present some new monotonicity results for tandem networks.
Resumo:
This paper studies frequent monitoring in an infinitely repeated game with imperfect public information and discounting, where players observe the state of a continuous time Brownian process at moments in time of length _. It shows that a limit folk theorem can be achieved with imperfect public monitoring when players monitor each other at the highest frequency, i.e., _. The approach assumes that the expected joint output depends exclusively on the action profile simultaneously and privately decided by the players at the beginning of each period of the game, but not on _. The strong decreasing effect on the expected immediate gains from deviation when the interval between actions shrinks, and the associated increase precision of the public signals, make the result possible in the limit. JEL: C72/73, D82, L20. KEYWORDS: Repeated Games, Frequent Monitoring, Public Monitoring, Brownian Motion.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Center for European Integration de la Freie Universität Berlin, Alemania, entre 2007 i 2009. El tema central del projecte consisteix en la descripció matemàtica de processos espai-temporals mitjançant la teoria dels Continuous-Time Random Walks. L'aportació més significativa del nostre treball en aquest camp consisteix en considerar per primera vegada la interacció entre diversos processos actuant de manera acoblada, ja que fins ara els models existents es limitaven a l'estudi de processos individuals o independents. Aquesta idea fa possible, per exemple, plantejar un sistema de transport en l'espai i a la vegada un procés de reacció (una reacció química, per exemple), i estudiar estadísticament com cada un pot alterar el comportament de l'altre. Això suposa un salt qualitatiu important en la descripció de processos de reacció-dispersió, ja que els nostres models permeten incorporar patrons de dispersió i comportaments temporals (cicles de vida) força realistes en comparació amb els models convencionals. Per tal de completar aquest treball teòric ha estat necessari també desenvolupar algunes eines numèriques (models de xarxa) per facilitar la implementació dels models. En la vessant pràctica, hem aplicat aquestes idees al cas de la dinàmica entre virus i el sistema immunològic que té lloc quan es produeix una infecció a l'organisme. Diferents estudis experimentals portats a terme els últims anys mostren com la resposta immunològica dels organismes superiors presenta una dinàmica temporal força complexa (per exemple, en el cas de la resposta programada). Per aquest motiu, les nostres tècniques matemàtiques són d'especial utilitat per a l'anàlisi d'aquests sistemes. Finalment, altres possibles aplicacions dels models, com ara l'estudi d'invasions biològiques, també han estat considerades.
Resumo:
The Hardy-Weinberg law, formulated about 100 years ago, states that under certainassumptions, the three genotypes AA, AB and BB at a bi-allelic locus are expected to occur inthe proportions p2, 2pq, and q2 respectively, where p is the allele frequency of A, and q = 1-p.There are many statistical tests being used to check whether empirical marker data obeys theHardy-Weinberg principle. Among these are the classical xi-square test (with or withoutcontinuity correction), the likelihood ratio test, Fisher's Exact test, and exact tests in combinationwith Monte Carlo and Markov Chain algorithms. Tests for Hardy-Weinberg equilibrium (HWE)are numerical in nature, requiring the computation of a test statistic and a p-value.There is however, ample space for the use of graphics in HWE tests, in particular for the ternaryplot. Nowadays, many genetical studies are using genetical markers known as SingleNucleotide Polymorphisms (SNPs). SNP data comes in the form of counts, but from the countsone typically computes genotype frequencies and allele frequencies. These frequencies satisfythe unit-sum constraint, and their analysis therefore falls within the realm of compositional dataanalysis (Aitchison, 1986). SNPs are usually bi-allelic, which implies that the genotypefrequencies can be adequately represented in a ternary plot. Compositions that are in exactHWE describe a parabola in the ternary plot. Compositions for which HWE cannot be rejected ina statistical test are typically “close" to the parabola, whereas compositions that differsignificantly from HWE are “far". By rewriting the statistics used to test for HWE in terms ofheterozygote frequencies, acceptance regions for HWE can be obtained that can be depicted inthe ternary plot. This way, compositions can be tested for HWE purely on the basis of theirposition in the ternary plot (Graffelman & Morales, 2008). This leads to nice graphicalrepresentations where large numbers of SNPs can be tested for HWE in a single graph. Severalexamples of graphical tests for HWE (implemented in R software), will be shown, using SNPdata from different human populations
Resumo:
First: A continuous-time version of Kyle's model (Kyle 1985), known as the Back's model (Back 1992), of asset pricing with asymmetric information, is studied. A larger class of price processes and of noise traders' processes are studied. The price process, as in Kyle's model, is allowed to depend on the path of the market order. The process of the noise traders' is an inhomogeneous Lévy process. Solutions are found by the Hamilton-Jacobi-Bellman equations. With the insider being risk-neutral, the price pressure is constant, and there is no equilibirium in the presence of jumps. If the insider is risk-averse, there is no equilibirium in the presence of either jumps or drifts. Also, it is analised when the release time is unknown. A general relation is established between the problem of finding an equilibrium and of enlargement of filtrations. Random announcement time is random is also considered. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time. Second: Power variations. it is considered, the asymptotic behavior of the power variation of processes of the form _integral_0^t u(s-)dS(s), where S_ is an alpha-stable process with index of stability 0&alpha&2 and the integral is an Itô integral. Stable convergence of corresponding fluctuations is established. These results provide statistical tools to infer the process u from discrete observations. Third: A bond market is studied where short rates r(t) evolve as an integral of g(t-s)sigma(s) with respect to W(ds), where g and sigma are deterministic and W is the stochastic Wiener measure. Processes of this type are particular cases of ambit processes. These processes are in general not of the semimartingale kind.
Resumo:
We present a study of the continuous-time equations governing the dynamics of a susceptible infected-susceptible model on heterogeneous metapopulations. These equations have been recently proposed as an alternative formulation for the spread of infectious diseases in metapopulations in a continuous-time framework. Individual-based Monte Carlo simulations of epidemic spread in uncorrelated networks are also performed revealing a good agreement with analytical predictions under the assumption of simultaneous transmission or recovery and migration processes
Resumo:
Researchers have used stylized facts on asset prices and trading volumein stock markets (in particular, the mean reversion of asset returnsand the correlations between trading volume, price changes and pricelevels) to support theories where agents are not rational expected utilitymaximizers. This paper shows that this empirical evidence is in factconsistent with a standard infite horizon perfect information expectedutility economy where some agents face leverage constraints similar tothose found in todays financial markets. In addition, and in sharpcontrast to the theories above, we explain some qualitative differencesthat are observed in the price-volume relation on stock and on futuresmarkets. We consider a continuous-time economy where agents maximize theintegral of their discounted utility from consumption under both budgetand leverage con-straints. Building on the work by Vila and Zariphopoulou(1997), we find a closed form solution, up to a negative constant, for theequilibrium prices and demands in the region of the state space where theconstraint is non-binding. We show that, at the equilibrium, stock holdingsvolatility as well as its ratio to stock price volatility are increasingfunctions of the stock price and interpret this finding in terms of theprice-volume relation.
Resumo:
We see that the price of an european call option in a stochastic volatilityframework can be decomposed in the sum of four terms, which identifythe main features of the market that affect to option prices: the expectedfuture volatility, the correlation between the volatility and the noisedriving the stock prices, the market price of volatility risk and thedifference of the expected future volatility at different times. We alsostudy some applications of this decomposition.
Resumo:
By means of Malliavin Calculus we see that the classical Hull and White formulafor option pricing can be extended to the case where the noise driving thevolatility process is correlated with the noise driving the stock prices. Thisextension will allow us to construct option pricing approximation formulas.Numerical examples are presented.