31 resultados para Constraint solving


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new algorithm called the parameterized expectations approach(PEA) for solving dynamic stochastic models under rational expectationsis developed and its advantages and disadvantages are discussed. Thisalgorithm can, in principle, approximate the true equilibrium arbitrarilywell. Also, this algorithm works from the Euler equations, so that theequilibrium does not have to be cast in the form of a planner's problem.Monte--Carlo integration and the absence of grids on the state variables,cause the computation costs not to go up exponentially when the numberof state variables or the exogenous shocks in the economy increase. \\As an application we analyze an asset pricing model with endogenousproduction. We analyze its implications for time dependence of volatilityof stock returns and the term structure of interest rates. We argue thatthis model can generate hump--shaped term structures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a numerical solution method for general equilibrium models with a continuum of heterogeneous agents, which combines elements of projection and of perturbation methods. The basic idea is to solve first for the stationary solutionof the model, without aggregate shocks but with fully specified idiosyncratic shocks. Afterwards one computes a first-order perturbation of the solution in the aggregate shocks. This approach allows to include a high-dimensional representation of the cross-sectional distribution in the state vector. The method is applied to a model of household saving with uninsurable income risk and liquidity constraints. The model includes not only productivity shocks, but also shocks to redistributive taxation, which cause substantial short-run variation in the cross-sectional distribution of wealth. If those shocks are operative, it is shown that a solution method based on very few statistics of the distribution is not suitable, while the proposed method can solve the model with high accuracy, at least for the case of small aggregate shocks. Techniques are discussed to reduce the dimension of the state space such that higher order perturbations are feasible.Matlab programs to solve the model can be downloaded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PRECON S.A is a manufacturing company dedicated to produce prefabricatedconcrete parts to several industries as rail transportation andagricultural industries.Recently, PRECON signed a contract with RENFE,the Spanish Nnational Rail Transportation Company to manufacturepre-stressed concrete sleepers for siding of the new railways of the highspeed train AVE. The scheduling problem associated with the manufacturingprocess of the sleepers is very complex since it involves severalconstraints and objectives. The constraints are related with productioncapacity, the quantity of available moulds, satisfying demand and otheroperational constraints. The two main objectives are related withmaximizing the usage of the manufacturing resources and minimizing themoulds movements. We developed a deterministic crowding genetic algorithmfor this multiobjective problem. The algorithm has proved to be a powerfuland flexible tool to solve the large-scale instance of this complex realscheduling problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dirac's constraint Hamiltonian formalism is used to construct a gauge-invariant action for the massive spin-one and -two fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The General Assembly Line Balancing Problem with Setups (GALBPS) was recently defined in the literature. It adds sequence-dependent setup time considerations to the classical Simple Assembly Line Balancing Problem (SALBP) as follows: whenever a task is assigned next to another at the same workstation, a setup time must be added to compute the global workstation time, thereby providing the task sequence inside each workstation. This paper proposes over 50 priority-rule-based heuristic procedures to solve GALBPS, many of which are an improvement upon heuristic procedures published to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This empirical study consists in an investigation of the effects, on the development of Information Problem Solving (IPS) skills, of a long-term embedded, structured and supported instruction in Secondary Education. Forty secondary students of 7th and 8th grades (13–15 years old) participated in the 2-year IPS instruction designed in this study. Twenty of them participated in the IPS instruction, and the remaining twenty were the control group. All the students were pre- and post-tested in their regular classrooms, and their IPS process and performance were logged by means of screen capture software, to warrant their ecological validity. The IPS constituent skills, the web search sub-skills and the answers given by each participant were analyzed. The main findings of our study suggested that experimental students showed a more expert pattern than the control students regarding the constituent skill ‘defining the problem’ and the following two web search sub-skills: ‘search terms’ typed in a search engine, and ‘selected results’ from a SERP. In addition, scores of task performance were statistically better in experimental students than in control group students. The paper contributes to the discussion of how well-designed and well-embedded scaffolds could be designed in instructional programs in order to guarantee the development and efficiency of the students’ IPS skills by using net information better and participating fully in the global knowledge society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to try to create a statistical model, based only on easily computable parameters from the CSP problem to predict runtime behaviour of the solving algorithms, and let us choose the best algorithm to solve the problem. Although it seems that the obvious choice should be MAC, experimental results obtained so far show, that with big numbers of variables, other algorithms perfom much better, specially for hard problems in the transition phase.