50 resultados para COMPONENT ANALYSIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (.100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Els avenços en tècniques de genotipat de polimorfismes genètics a gran escala estan liderant una revolució en el camp de l’epidemiologia genètica i la genètica de poblacions humanes. La informació aportada per aquestes tècniques ha evidenciat l’existència d’estructuracions poblacionals que poden augmentar l’error en els estudis d’associació a escala genòmica (GWAS, genome-wide association studies). Estudis recents han demostrat la presència d’aquestes estructuracions a nivell interregional i intrarregional a Europa. El present projecte ha avaluat el grau d’estructuració genètica en poblacions de la Península Ibèrica i altres regions del sudoest europeu (Itàlia i França) per quantificar l’impacte que aquesta potencial estructuració pot tenir en el disseny d’estudis d’associació GWAS i reconstruir la història demogràfica de les poblacions de la Mediterrània. Per aconseguir aquests objectius, s’han analitzat mostres de DNA de 770 individus de 26 poblacions de la Península Ibèrica, França, Itàlia i d’altres països de la Mediterrània. Aquestes mostres van ser genotipades per 240000 SNPs utilitzant l’array 250K StyI d’Affymetrix en el marc d’aquest projecte o mitjançant altres arrays d’Affymetrix en els projectes internacionals HapMap i POPRES. S’han realitzat anàlisis estadístiques incloent anàlisis de components principals, Fst, identitat per descendència, desequilibri de lligament, barreres genètiques, etc. Aquests resultats han permés construir un marc de referència de la variabilitat en aquesta regió, avaluar el seu impacte en estudis d’associació i proposar mesures per evitar l’increment de qualsevol tipus d’error (tipus I i II) en estudis nacionals i internacionals. A més, també han permés reconstruir la història de les poblacions humanes de la Mediterrània així com analitzar les seves relacions demogràfiques. Donada la duració limitada d’aquesta acció (24 mesos, d’octubre de 2010 a setembre de 2012), els resultats d’aquest projecte es troben actualment en fase de redacció i conduiran a diverses publicacions en revistes internacionals i a la preparació de comunicacions a congressos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biplots are graphical displays of data matrices based on the decomposition of a matrix as the product of two matrices. Elements of these two matrices are used as coordinates for the rows and columns of the data matrix, with an interpretation of the joint presentation that relies on the properties of the scalar product. Because the decomposition is not unique, there are several alternative ways to scale the row and column points of the biplot, which can cause confusion amongst users, especially when software packages are not united in their approach to this issue. We propose a new scaling of the solution, called the standard biplot, which applies equally well to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. The standard biplot also handles data matrices with widely different levels of inherent variance. Two concepts taken from correspondence analysis are important to this idea: the weighting of row and column points, and the contributions made by the points to the solution. In the standard biplot one set of points, usually the rows of the data matrix, optimally represent the positions of the cases or sample units, which are weighted and usually standardized in some way unless the matrix contains values that are comparable in their raw form. The other set of points, usually the columns, is represented in accordance with their contributions to the low-dimensional solution. As for any biplot, the projections of the row points onto vectors defined by the column points approximate the centred and (optionally) standardized data. The method is illustrated with several examples to demonstrate how the standard biplot copes in different situations to give a joint map which needs only one common scale on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot readable. The proposal also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to interpret the biplot it is necessary to know which points usually variables are the ones that are important contributors to the solution, and this information is available separately as part of the biplot s numerical results. We propose a new scaling of the display, called the contribution biplot, which incorporates this diagnostic directly into the graphical display, showing visually the important contributors and thus facilitating the biplot interpretation and often simplifying the graphical representation considerably. The contribution biplot can be applied to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. In the contribution biplot one set of points, usually the rows of the data matrix, optimally represent the spatial positions of the cases or sample units, according to some distance measure that usually incorporates some form of standardization unless all data are comparable in scale. The other set of points, usually the columns, is represented by vectors that are related to their contributions to the low-dimensional solution. A fringe benefit is that usually only one common scale for row and column points is needed on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot legible. Furthermore, this version of the biplot also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important, when they are in fact contributing minimally to the solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The singular value decomposition and its interpretation as alinear biplot has proved to be a powerful tool for analysing many formsof multivariate data. Here we adapt biplot methodology to the specifficcase of compositional data consisting of positive vectors each of whichis constrained to have unit sum. These relative variation biplots haveproperties relating to special features of compositional data: the studyof ratios, subcompositions and models of compositional relationships. Themethodology is demonstrated on a data set consisting of six-part colourcompositions in 22 abstract paintings, showing how the singular valuedecomposition can achieve an accurate biplot of the colour ratios and howpossible models interrelating the colours can be diagnosed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The correlation between the species composition of pasture communities and soil properties in Plana de Vic has been studied using two multivariate methods, Correspondence Analysis (CA) for the vegetation data and Principal Component Analysis (PCA) for the soil data. To analyse the pastures, we took 144 vegetation relevés (comprising 201 species) that have been classified into 10 phytocoenological communities elsewhere. Most of these communities are almost entirely built up by perennials, ranging from xerophilous, clearly Mediterranean, to mesophilous, related to medium-European pastures, but a few occurring in shallow soils are dominated by therophytes. As for the soil properties, we analysed texture, pH, depth, bulk density, organic matter, C/N ratio and the carbonates content of 25 samples, correspondingto representative relevés of the communities studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A five year program of systematic multi-element geochemical exploration of the Catalonian Coastal Ranges has been initiated by the Geological Survey of Autonomic Government of Catalonia (Generalitat de Catalunya) and the Department of Geological and Geophysical Exploration (University of Barcelona). This paper reports the first stage results of this regional survey, covering an area of 530 km2 in the Montseny Mountains, NE of Barcelona (Spain). Stream sediments for metals and stream waters for fluoride were chosen because of the regional characteristics. Four target areas for future tactic survey were recognized after the prospect. The most important is a 40 km* zone in the Canoves-Vilamajor area, with high base metal values accompanied by Cd, Ni, Co, As and Sb anomalies. Keywords: Catalanides. Geochemical exploration. Stream sediments. Base metal anomalies. Principal Component Analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA is justified in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.