25 resultados para Atomic bomb.
Resumo:
Time correlation functions between the velocity of a tagged particle and velocities of particles within specified ranges of initial separations have been obtained by molecular dynamics simulation. These correlation functions have allowed us to analyze the momentum transfer between particles in different coordination shells. Two simple liquids at very different densities and two purely repulsive potentials with very different softnesses have been considered. The longitudinal correlations, which are the velocity cross-correlations along the initial direction defined by the centers of two given particles, have been calculated separately. It has been proven that these correlations should be attributed to particles both in front of and behind the central one. As with propagating longitudinal modes, they are strongly dependent on the softness of the potential core. Some characteristic features of the velocity correlation functions after the initial rise should be related to nonlongitudinal correlations. It has been shown that velocity cross-correlations between distinct particles cannot only be attributed to the direct interactions among particles, but also to the motions induced by the movement of a tagged particle on their neighbors.
Resumo:
The nanometer¿scale oxidation of Si(100) surfaces in air is performed with an atomic force microscope working in tapping mode. Applying a positive voltage to the sample with respect to the tip, two kinds of modifications are induced on the sample: grown silicon oxide mounds less than 5 nm high and mounds higher than 10 nm (which are assumed to be gold depositions). The threshold voltage necessary to produce the modification is studied as a function of the average tip¿to¿sample distance.
Resumo:
The interaction of atomic hydrogen with C4H9, Si4H9, and Ge4H9 model clusters has been studied using all-electron and pseudopotential ab initio Hartree-Fock computations with basis sets of increasing flexibility. The results show that the effect of polarization functions is important in order to reproduce the experimental findings, but their inclusion only for the atoms directly involved in the chemisorption bond is usually sufficient. For the systems H-C4H9 and H-Si4H9 all-electron and pseudopotential results are in excellent agreement when basis sets of comparable quality are used. Besides, semiempirical modified-neglect-of-differential-overlap computations provide quite reliable results both for diamond and silicon and have been used to investigate larger model clusters. The results confirm the local nature of chemisorption and further justify the use of minimal X4H9 model clusters.
Resumo:
Interaction models of atomic Al with Si4H9, Si4H7, and Si6H9 clusters have been studied to simulate Al chemisorption on the Si(111) surface in the atop, fourfold atop, and open sites. Calculations were carried out using nonempirical pseudopotentials in the framework of the ab initio Hartree-Fock procedure. Equilibrium bond distances, binding energies for adsorption, and vibrational frequencies of the adatoms are calculated. Several basis sets were used in order to show the importance of polarization effects, especially in the binding energies. Final results show the importance of considering adatom-induced relaxation effects to specify the order of energy stabilities for the three different sites, the fourfold atop site being the preferred one, in agreement with experimental findings.
Resumo:
Atomic Force Microscope and related techniques have played a key role in the development of the nanotechnology revolution that is taking place in science. This paper reviews the basic principles behind the technique and its different operation modes and applications, pointing out research worksperformed in the Nanometric Techniques Unit of the CCiTUB in order to exemplify the vast array of capabilities of these instruments.
Resumo:
We present results from both, calorimetric and dilatometric studies of the isothermal ordering process taking place in a Cu-Zn-Al shape memory alloy after quenches from Tq temperatures ranging from 350 K to 1200 K. The dissipated energy and the length variations of the system are obtained during the process. The change of these quantities in the whole process have been compared with the difference [MATH] between Ms, measured after the relaxation and Ms measured just after the quench. We obtain that these three quantities present, as a function of Tq, the same qualitative behaviour. These changes are then associated with changes of the L21 ordering after the quench in the system. The relaxational process does not follow a single exponential decay. Instead, a continuous slowing down is observed. A relaxation time [MATH] has been defined to characterize the relaxation rate. We show that [MATH] depends on both the annealing and the quenching (Tq [MATH] 800 K) temperatures through an Arrhenius law.
Resumo:
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.
Resumo:
The origin of the microscopic inhomogeneities in InxGa1-xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8μm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05