33 resultados para Arabic character recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the inversion of nonlinear distortions in order to improve the recognition rates of a speaker recognizer system. We study the effect of saturations on the test signals, trying to take into account real situations where the training material has been recorded in a controlled situation but the testing signals present some mismatch with the input signal level (saturations). The experimental results for speaker recognition shows that a combination of several strategies can improve the recognition rates with saturated test sentences from 80% to 89.39%, while the results with clean speech (without saturation) is 87.76% for one microphone, and for speaker identification can reduce the minimum detection cost function with saturated test sentences from 6.42% to 4.15%, while the results with clean speech (without saturation) is 5.74% for one microphone and 7.02% for the other one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the quantitative and qualitative findings from an experiment designed to evaluate a developing model of affective postures for full-body virtual characters in immersive virtual environments (IVEs). Forty-nine participants were each requested to explore a virtual environment by asking two virtual characters for instructions. The participants used a CAVE-like system to explore the environment. Participant responses and their impression of the virtual characters were evaluated through a wide variety of both quantitative and qualitative methods. Combining a controlled experimental approach with various data-collection methods provided a number of advantages such as providing a reason to the quantitative results. The quantitative results indicate that posture plays an important role in the communication of affect by virtual characters. The qualitative findings indicated that participants attribute a variety of psychological states to the behavioral cues displayed by virtual characters. In addition, participants tended to interpret the social context portrayed by the virtual characters in a holistic manner. This suggests that one aspect of the virtual scene colors the perception of the whole social context portrayed by the virtual characters. We conclude by discussing the importance of designing holistically congruent virtual characters especially in immersive settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the inversion of nonlinear distortions in order to improve the recognition rates of a speaker recognizer system. We study the effect of saturations on the test signals, trying to take into account real situations where the training material has been recorded in a controlled situation but the testing signals present some mismatch with the input signal level (saturations). The experimental results shows that a combination of several strategies can improve the recognition rates with saturated test sentences from 80% to 89.39%, while the results with clean speech (without saturation) is 87.76% for one microphone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the editors explain in the introduction, a workshop dedicated to 'Experience and Knowledge Structures in Arabic and Latin sciences' was held at the Max Plank Institue for the HIstory of Science...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of two Janus-type heterocycles with the capacity to simultaneously recognize guanine and uracyl in G-U mismatched pairs through complementary hydrogen bond pairing is described. Both compounds were conveniently functionalized with a carboxylic function and efficiently attached to a tripeptide sequence by using solid-phase methodologies. Ligands based on the derivatization of such Janus compounds with a small aminoglycoside, neamine, and its guanidinylated analogue have been synthesized, and their interaction with Tau RNA has been investigated by using several biophysical techniques, including UV-monitored melting curves, fluorescence titration experiments, and 1H NMR. The overall results indicated that Janus-neamine/guanidinoneamine showed some preference for the +3 mutated RNA sequence associated with the development of some tauopathies, although preliminary NMR studies have not confirmed binding to G-U pairs. Moreover, a good correlation has been found between the RNA binding affinity of such Janus-containing ligands and their ability to stabilize this secondary structure upon complexation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of prior experiential learning (RPEL) involves the assessment ofskills and knowledge acquired by an individual through previous experience, which isnot necessarily related to an academic context. RPEL practices are far from generalisedin higher education, and there is a lack of specific guidelines on how to implement RPLprograms in particular settings, such as management education or online programs. TheRPEL pilot program developed in a Spanish virtual university is used throughout thearticle as the basis for further reflection on the design and implementation of RPEL inonline postgraduate education in the business field. The role of competences as a centraltheoretical foundation for RPEL is explained, and the context and characteristics of theRPEL program described. Special attention is paid to the key elements of the program¿sdesign and to the practical aspects of its implementation. The results of the program areassessed and general conclusions and suggestions for further research are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new supervised linearfeature extraction technique for multiclass classification problemsthat is specially suited to the nearest neighbor classifier (NN).The problem of finding the optimal linear projection matrix isdefined as a classification problem and the Adaboost algorithmis used to compute it in an iterative way. This strategy allowsthe introduction of a multitask learning (MTL) criterion in themethod and results in a solution that makes no assumptions aboutthe data distribution and that is specially appropriated to solvethe small sample size problem. The performance of the methodis illustrated by an application to the face recognition problem.The experiments show that the representation obtained followingthe multitask approach improves the classic feature extractionalgorithms when using the NN classifier, especially when we havea few examples from each class

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system