339 resultados para Entropia -- Teoria matemàtica
Resumo:
The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges
Resumo:
An analytical set of field-induced coordinates is defined and is used to show that the vibrational degrees of freedom required to completely describe nuclear relaxation polarizabilities and hyperpolarizabilities is reduced from 3N-6 to a relatively small number. As this number does not depend upon the size of the molecule, the process provides computational advantages. A method is provided to separate anharmonic contributions from harmonic contributions as well as effective mechanical from electrical anharmonicity. The procedures are illustrated by Hartree-Fock calculations, indicating that anharmonicity can be very important
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules
Resumo:
El presente documento conduce a un análisis y comparativa de diferentes y variados conjuntos de redes sociales on-line. Para ello, primero se explica la base teórica de teoría de grafos para su interpretación y comprensión, así como de la base matemática que fundamenta el tipo específico de red estudiada y las diferentes métricas (estadísticas) extraídas de estas. Luego, se ofrece una detallada explicación del entorno de trabajo tanto para la aplicación informática desarrollada, como para posterior visualización y también una explicación y los algoritmos utilizados en las funciones implementadas con tales fines. Para finalizar el documento, se realiza una inmersión particular en cada red social on-line, puntualizando sus características y finalizando con una comparativa general entre todas ellas, siempre acompañadas con sus respectivas visualizaciones en el espacio 2D representadas en forma de grafo.
Resumo:
Fa uns anys un grup de professors del departament d’Informàtica i Matemàtica Aplicada de la Universitat de Girona va decidir endinsar-se al món de l’ensenyament a través d’Internet (e-learning). D’aquí va néixer el projecte ACME (Avaluació Continuada i Millora de l’Ensenyament). Inicialment l’ACME anava dirigit a reduir l’elevat fracàs dels alumnes a les assignatures de matemàtiques. El resultat va ser tan bo que es va ampliar a altrescamps d’estudi com la química o la informàtica, amb tot i això encara hi ha moltes matèries a les quals no dóna suport. Aquest Projecte Final de Carrera neix per donar suport a un nou tipus de problemes dins de la plataforma ACME, els autòmats finits. Aquest nou mòdul inclourà les eines necessàries per poder generar diferents tipus de problemes sobre autòmats finits i la seva posterior correcció, donant suport a les assignatures de LGA (Llenguatges, Gramàtiques i Autòmats) i TALLF (Teoria d’Autòmats i Llenguatges Formals)
Resumo:
Des del principi dels temps històrics, la Matemàtica s'ha generat en totes les civilitzacions sobre la base de la resolució de problemes pràctics.Tanmateix, a partir del període grec la Història ens mostra la necessitat de fer un pas més endavant: l'evolució històrica de la Matemàtica situa els mètodes de raonament com a eix central de la recerca en Matemàtica. A partir d'una ullada als objectius i mètodes de treball d'alguns autors cabdals en la Història dels conceptes matemàtics postulem l'aprenentatge de les formes de raonament matemàtic com l'objectiu central de l'educació matemàtica, i la resolució de problemes com el mitjà més eficient per a coronar aquest objectiu.English version.From the beginning of the historical times, mathematics has been generated in all the civilizations on the base of the resolution of practical problems. Nevertheless, from the greek period History shows us the necessity to take one more step: the historical evolution of mathematics locates the methods of reasoning as the central axis of the research in mathematics. Glancing over the objectives and methods of work used bysome fundamental authors in the History of the mathematical concepts we postulated the learning of the forms of mathematical reasoning like the central objective of the mathematical education, and the resolution of problems as the most efficient way to carry out this objective.
Resumo:
L’objectiu central del treball es analitzar si, tal i com assenyalen els Standards (NCTM, 2000), una seqüenciació acurada de problemes pot servir com a vehicle per a aprendre els continguts que marca el currículum. Amb aquesta finalitat, es van enregistrar diversos episodis amb alumnes que cobrien un ampli espectre de la diversitat de l’alumnat. S’han seleccionat i analitzat aquelles que han semblat més representatives.