251 resultados para RELATIVISTIC ENERGIES
Resumo:
The structural and optical properties of three different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases are observed by transmission electron microscopy in the nanowires. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV when the percentage of wurtzite is increased. The downward shift of the emission peaks can be understood by carrier confinement at the interfaces, in quantum wells and in random short period superlattices existent in these nanowires, assuming a staggered band offset between wurtzite and zinc-blende GaAs. The latter is confirmed also by time-resolved measurements. The extremely local nature of these optical transitions is evidenced also by cathodoluminescence measurements. Raman spectroscopy on single wires shows different strain conditions, depending on the wurtzite content which affects also the band alignments. Finally, the occurrence of the two crystallographic phases is discussed in thermodynamic terms.
Resumo:
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.
Resumo:
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.
Resumo:
The simultaneous etherification of isobutene and isoamylenes with ethanol has been studied using macroreticu-lar acid ion-exchange resins as catalyst. Most of the experiments were carried out over Amberlyst-35. In addition,Amberlyst-15 and Purolite CT-275 were also tested. Chemical equilibrium of four chemical reactions was studied:ethyl tert-butyl ether formation, tert-amyl ethyl ether formation from isoamylenes (2-methyl-1-butene and 2-methyl-2-butene) and isomerization reaction between both isoamylenes. Equilibrium data were obtained in a batchwisestirred tank reactor operated at 2.0 MPa and within the temperature range from 323 to 353 K. Experimental molarstandard enthalpy and entropy changes of reaction were determined for each reaction. From these data, the molarenthalpy change of formation of ethyl tert-butyl ether and tert-amyl ethyl ether were estimated. Besides, the chemical equilibrium between both diisobutene dimers, 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, wasevaluated. A good agreement between thermodynamic results for the simultaneous etherification carried out in thiswork and those obtained for the isolated ethyl tert-butyl ether and tert-amyl ethyl ether systems was obtained.
Resumo:
The possible associations between the microquasars LS 5039 and LS I +61 303 and the EGRET sources 3EG J1824-1514 and 3EG J0241+6103 suggest that microquasars could also be sources of high-energy gamma-rays. In this work, we present a detailed numerical inverse Compton (IC) model, based on a microquasar scenario, that reproduces the high-energy gamma-ray spectra and variability observed by EGRET for the mentioned sources. Our model considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet that interact through IC scattering with both the radiation and the magnetic fields.
Resumo:
Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.
Resumo:
Oxygen vacancies in metal oxides are known to determine their chemistry and physics. The properties of neutral oxygen vacancies in metal oxides of increasing complexity (MgO, CaO, alpha-Al2O3, and ZnO) have been studied using density functional theory. Vacancy formation energies, vacancy-vacancy interaction, and the barriers for vacancy migration are determined and rationalized in terms of the ionicity, the Madelung potential, and lattice relaxation. It is found that the Madelung potential controls the oxygen vacancy properties of highly ionic oxides whereas a more complex picture arises for covalent ZnO.
Resumo:
The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains can be due to oxygen incorporation.
Resumo:
Microquasars are promising candidates to emit high-energy gamma-rays. Moreover, statistical studies show that variable EGRET sources at low galactic latitudes could be associated with the inner spiral arms. The variable nature and the location in the Galaxy of the high-mass microquasars, concentrated in the galactic plane and within 55 degrees from the galactic center, give to these objects the status of likely counterparts of the variable low-latitude EGRET sources. We consider in this work the two most variable EGRET sources at low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model to explain the EGRET data in consistency with the observations at lower energies (from radio frequencies to soft gamma-rays) within the EGRET error box.
Resumo:
In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.
Resumo:
We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LS I +61˚303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed ~10 days after a radio outburst, the radio source showed a constant flux density, which allowed sensitive imaging of the emission distribution. The structure in the map shows a clear extension to the southeast. Comparing our data with previous VLBI observations we interpret the extension as a collimated radio jet as found in several other X-ray binaries. Assuming that the structure is the result of an expansion that started at the onset of the outburst, we derive an apparent expansion velocity of 0:003 c, which, in the context of Doppler boosting, corresponds to an intrinsic velocity of at least 0:4 c for an ejection close to the line of sight. From the apparent velocity in all available epochs we are able to establish variations in the ejection angle which imply a precessing accretion disk. Finally we point out that LS I +61˚303, like SS 433 and Cygnus X-1, shows evidence for an emission region almostorthogonal to the relativistic jet
Resumo:
An analytical approximation, depending on five parameters, for the atomic screening function is proposed. The corresponding electrostatic potential takes a simple analytical form (superposition of three Yukawa potentials) well suited to most practical applications. Parameters in the screening function, determined by an analytical fitting procedure to Dirac-Hartree-Fock-Slater (DHFS) self-consistent data, are given for Z=1¿92. The reliability of this analytical approach is demonstrated by showing that (a) Born cross sections for elastic scattering of fast charged particles by the present analytical field and by the DHFS field practically coincide and (b) one-electron binding energies computed from the independent-particle model with our analytical field (corrected for exchange and electrostatic self-interaction) agree closely with the DHFS energy eigenvalues.
Resumo:
The effect of the local environment on the energetic strain within small (SiO)N rings (with N=2,3) in silica materials is investigated via periodic model systems employing density functional calculations. Through comparison of the energies of various nonterminated systems containing small rings in strained and relatively unstrained environments, with alpha quartz, we demonstrate how small ring strain is affected by the nature of the embedding environment. We compare our findings with numerous previously reported calculations, often predicting significantly different small-ring strain energies, leading to a critical assessment of methods of calculating accurate localized ring energies. The results have relevance for estimates of the strain-induced response (e.g., chemical, photo, and radio) of small silica rings, and the propensity for them to form in bulk glasses, thin films, and nanoclusters.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.